Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co( iii ) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate)
2005; Royal Society of Chemistry; Issue: 1 Linguagem: Inglês
10.1039/b513107c
ISSN1477-9234
AutoresClaire T. Cohen, C.M. Thomas, Kathryn L. Peretti, Emil B. Lobkovsky, Geoffrey W. Coates,
Tópico(s)CO2 Reduction Techniques and Catalysts
ResumoSynthetic routes to a series of new (salen-1)CoX (salen-1 = N,N'-bis(salicylidene)-1,2-diaminoalkane; X = halide or carboxylate) species are described and the X-ray crystal structures of two (salen-1)CoX (salen- = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminocyclohexane; X = Cl, I) complexes are presented. (R,R)-(salen-)CoX (X = Cl, Br, I, OAc, pentafluorobenzoate (OBzF(5))) catalysts are active for the copolymerization of cyclohexene oxide (CHO) and CO(2), yielding syndiotactic poly(cyclohexene carbonate) (PCHC), a previously unreported PCHC microstructure. Variation of the salen ligand and reaction conditions, as well as the inclusion of [PPN]Cl ([PPN]Cl = bis(triphenylphosphine)iminium chloride) cocatalysts, has dramatic effects on the polymerization rate and the resultant PCHC tacticity. Catalysts rac-(salen-)CoX (salen- = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-diaminopropane; X = Br, OBzF(5)) have high activities for CHO/CO(2) copolymerization, yielding syndiotactic PCHCs with up to 81% r-centered tetrads. Using Bernoullian statistical methods, PCHC tetrad and triad sequences were assigned in the (13)C NMR spectra of these polymers in the carbonyl and methylene regions, respectively.
Referência(s)