Revisão Acesso aberto Revisado por pares

Mechanisms of Microbubble-Facilitated Sonoporation for Drug and Gene Delivery

2014; Future Science Ltd; Volume: 5; Issue: 4 Linguagem: Inglês

10.4155/tde.14.10

ISSN

2041-6008

Autores

Zhenzhen Fan, Ronald E. Kumon, Cheri X. Deng,

Tópico(s)

Microbial Inactivation Methods

Resumo

Therapeutic DeliveryVol. 5, No. 4 ReviewMechanisms of microbubble-facilitated sonoporation for drug and gene deliveryZhenzhen Fan‡, Ronald E Kumon‡ & Cheri X DengZhenzhen Fan‡ Institute of Acoustics, Chinese Academy of Sciences, No. 21 Beisihuanxi Road, Beijing, 100190, China, Ronald E Kumon‡ Department of Physics, Kettering University, 1700 University Avenue, Flint, MI, 48504-6214, USA & Cheri X Deng Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USAPublished Online:23 May 2014https://doi.org/10.4155/tde.14.10AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articlePapers of special note have been highlighted as:• of interestReferences1 Klibanov AL. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest. Radiol. 41(3), 354–362 (2006).Crossref, Medline, Google Scholar2 Kaufmann BA, Lindner JR. Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol. 18(1), 11–16 (2007).Crossref, Medline, CAS, Google Scholar3 Price RJ, Skyba DM, Kaul S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98(13), 1264–1267 (1998).Crossref, Medline, CAS, Google Scholar4 Miller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med. Biol. 26(4), 661–667 (2000).Crossref, Medline, CAS, Google Scholar5 Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA. Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. Ultrasound Med. Biol. 36(9), 1470–1480 (2010).Crossref, Medline, Google Scholar6 Xie A, Belcik T, Qi Y et al. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles. JACC Cardiovasc. Imaging 5(12), 1253–1262 (2012).Crossref, Medline, Google Scholar7 Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 60(10), 1137–1152 (2008).Crossref, Medline, CAS, Google Scholar8 Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nat. Phy. 1(2), 107 (2005). • Uses high-speed video microscopy and optical trapping of microbubbles to clearly demonstrate that microbubble collapse can result in jetting and pore formation in cells.Crossref, CAS, Google Scholar9 Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32(6), 915–924 (2006). • Demonstrates that cavitation induces uptake of macromolecules using flow cytometry, electron microscopy, and fluorescence microscopy and provide images showing membrane repair after sonporation.Crossref, Medline, Google Scholar10 Fan Z, Kumon RE, Park J, Deng CX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J. Control. Release 142(1), 31–39 (2010).Crossref, Medline, CAS, Google Scholar11 Leighton TG. The Acoustic Bubble.Academic Press, San Diego, CA, USA. (1994).Google Scholar12 Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol. 54(6), R27–R57 (2009).Crossref, Medline, Google Scholar13 Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).Crossref, Medline, CAS, Google Scholar14 Kaul S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation 118(3), 291–308 (2008).Crossref, Medline, Google Scholar15 Borden MA, Longo M. Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir 18, 9225–9233 (2002).Crossref, CAS, Google Scholar16 Goertz DE, De Jong N, Van der Steen AF. Attenuation and size distribution measurements of Definity and manipulated Definity populations. Ultrasound Med. Biol. 33(9), 1376–1388 (2007).Crossref, Medline, Google Scholar17 Klibanov AL. Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med. Biol. Eng. Comput. 47(8), 875–882 (2009).Crossref, Medline, Google Scholar18 Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc. Chem. Res. 42(7), 881–892 (2009).Crossref, Medline, CAS, Google Scholar19 Delalande A, Kotopoulis S, Rovers T, Pichon C, Postema M. Sonoporation at a low mechanical indiex. Bubble Sci. Engin. Technol. 3, 3–11 (2011).Crossref, CAS, Google Scholar20 Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423(6936), 153–156 (2003).Crossref, Medline, CAS, Google Scholar21 Longuet-Higgins MS. Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. London A 454, 725–742 (1998).Crossref, CAS, Google Scholar22 Wu J. Shear stress in cells generated by ultrasound. Prog. Biophys. Mol. Biol. 93(1–3), 363–373 (2007).Crossref, Medline, Google Scholar23 Van Bavel E. Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog. Biophys. Mol. Biol. 93(1–3), 374–383 (2007).Crossref, Medline, CAS, Google Scholar24 Crum LA, Roy RA. Sonoluminescence. Science 266(5183), 233–234 (1994).Crossref, Medline, CAS, Google Scholar25 Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med. Biol. 21(8), 1059–1065 (1995).Crossref, Medline, CAS, Google Scholar26 Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 22(9), 1131–1154 (1996).Crossref, Medline, CAS, Google Scholar27 Lauterborn W, Ohl CD. Cavitation bubble dynamics. Ultrason. Sonochem. 4(2), 65–75 (1997).Crossref, Medline, CAS, Google Scholar28 Sundaram J, Mellein BR, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys. J. 84(5), 3087–3101 (2003).Crossref, Medline, CAS, Google Scholar29 Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR. Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med. Biol. 32(7), 1111–1122 (2006).Crossref, Medline, Google Scholar30 Zhou Y, Cui J, Deng CX. Dynamics of sonoporation correlated with acoustic cavitation activities. Biophys. J. 94(7), L51–53 (2008).Crossref, Medline, CAS, Google Scholar31 Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG. The role of cavitation in acoustically activated drug delivery. J. Control. Release 107(2), 253–261 (2005).Crossref, Medline, CAS, Google Scholar32 Benjamin TB, Ellis AT. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. Roy. Soc. A260, 221–240. (1966).Crossref, Google Scholar33 Lauterborn W, Bolle H. Experimental investigation of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid. Mech. 72, 391–399 (1975).Crossref, Google Scholar34 Prosperetti A. Bubble phenomena in sound fields: part 2. Ultrasonics 22, 115–124 (1984).Crossref, Google Scholar35 Plesset MS, Chapman RB. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid. Mech. 47, 283–290 (1971).Crossref, Google Scholar36 Tomita Y, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid. Mech. 169, 535–564 (1986).Crossref, CAS, Google Scholar37 Postema M, Kotopoulis S, Delalande A, Gilja OH. Sonoporation: Why microbubbles create pores. Ultraschall Med. 33(1), 97–98 (2012).Crossref, Google Scholar38 Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: Mechanistic insights and ongoing challenges for gene transfer. Gene 525(2), 191–199 (2013).Crossref, Medline, CAS, Google Scholar39 Okada K, Kudo N, Niwa K, Yamamoto K. A basic study on sonoporation with microbubbles exposed to pulsed ultrasound. J. Med. Ultrasonics 32, 3–11 (2005).Crossref, Medline, Google Scholar40 Kudo N, Okada K, Yamamoto K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96(12), 4866–4876 (2009).Crossref, Medline, CAS, Google Scholar41 Van Wamel A, Kooiman K, Harteveld M et al.Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112(2), 149–155 (2006). • Uses high-speed microscopy to show that stable cavitation of microbubbles can result in cell deformation that is related to transient increases in cell permeability shown by a fluorescent marker.Crossref, Medline, CAS, Google Scholar42 Kooiman K, Foppen-Harteveld M, Van Der Steen AF, De Jong N. Sonoporation of endothelial cells by vibrating targeted microbubbles. J. Control. Release 154(1), 35–41 (2011).Crossref, Medline, CAS, Google Scholar43 Forbes MM, Steinberg RL, O'Brien WD Jr. Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells. Ultrasound Med. Biol. 34(12), 2009–2018 (2008).Crossref, Medline, Google Scholar44 Forbes MM, Steinberg RL, O'Brien WD Jr. Frequency-dependent evaluation of the role of Definity in producing sonoporation of Chinese hamster ovary cells. J. Ultrasound Med. 30(1), 61–69 (2011).Crossref, Medline, Google Scholar45 Forbes MM, O'Brien WD Jr. Development of a theoretical model describing sonoporation activity of cells exposed to ultrasound in the presence of contrast agents. J. Acoust. Soc. Am. 131(4), 2723–2729 (2012).Crossref, Medline, CAS, Google Scholar46 Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl Acad. Sci. USA 108(8), 3258–3263 (2011).Crossref, Medline, CAS, Google Scholar47 Zhou Y, Yang K, Cui J, Ye JY, Deng CX. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release 157(1), 103–111 (2012).Crossref, Medline, CAS, Google Scholar48 Dayton P, Klibanov A, Brandenburger G, Ferrara K. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med. Biol. 25(8), 1195–1201 (1999).Crossref, Medline, CAS, Google Scholar49 Lum AF, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J. Control. Release 111(1–2), 128–134 (2006).Crossref, Medline, CAS, Google Scholar50 Garbin V, Overvelde M, Dollet B, de Jong N, Lohse D, Versluis M. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces. Phys. Med. Biol. 56(19), 6161–6177 (2011).Crossref, Medline, CAS, Google Scholar51 Postema M, Marmottant P, Lancee CT, Hilgenfeldt S, de Jong N. Ultrasound-induced microbubble coalescence. Ultrasound Med. Biol. 30(10), 1337–1344 (2004).Crossref, Medline, Google Scholar52 Kokhuis TJ, Garbin V, Kooiman K et al. Secondary Bjerknes forces deform targeted microbubbles. Ultrasound Med. Biol.39((3), ), 490––506 (2013).Crossref, Medline, Google Scholar53 Mannaris C, Averkiou MA. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery. Ultrasound Med. Biol. 38(4), 681–691 (2012).Crossref, Medline, Google Scholar54 Fan Z, Chen D, Deng CX. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles. J. Control. Release 170(3), 401–413 (2013).Crossref, Medline, CAS, Google Scholar55 Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7(23), 2023–2027 (2000).Crossref, Medline, CAS, Google Scholar56 Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery. J. Control. Release 104(1), 213–222 (2005). • Uses scanning electron microscopy imaging to show direct evidence for pore formation on cells resulting from ultrasound treatment with microbubbles.Crossref, Medline, CAS, Google Scholar57 Karshafian R, Bevan PD, Williams R, Samac S, Burns PN. Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med. Biol. 35(5), 847–860 (2009).Crossref, Medline, Google Scholar58 Chen H, Brayman AA, Kreider W, Bailey MR, Matula TJ. Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound Med. Biol. 37(12), 2139–2148 (2011).Crossref, Medline, Google Scholar59 Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 353(9162), 1409 (1999).Crossref, Medline, CAS, Google Scholar60 Ohl CD, Arora M, Ikink R et al. Sonoporation from jetting cavitation bubbles. Biophys. J. 91(11), 4285–4295 (2006).Crossref, Medline, CAS, Google Scholar61 Zeghimi A, Uzbekov R, Arbeille B, Escoffre JM, Bouakaz A. Ultrastuctural modifications of cell membranes and organelles induced by sonoporation. IEEE Int. Ultrason. Symp. 2045–2048 (2012).Google Scholar62 Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M. Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Ther. 13(2), 163–172 (2006).Crossref, Medline, CAS, Google Scholar63 Zhao YZ, Luo YK, Lu CT et al. Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro. J. Drug Target. 16(1), 18–25 (2008).Crossref, Medline, Google Scholar64 Yang F, Gu N, Chen D et al. Experimental study on cell self-sealing during sonoporation. J. Control. Release 131(3), 205–210 (2008).Crossref, Medline, CAS, Google Scholar65 Zarnitsyn V, Rostad CA, Prausnitz MR. Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation. Biophys. J. 95(9), 4124–4138 (2008).Crossref, Medline, CAS, Google Scholar66 Zhou Y, Kumon RE, Cui J, Deng CX. The size of sonoporation pores on the cell membrane. Ultrasound Med. Biol. 35(10), 1756–1760 (2009).Crossref, Medline, Google Scholar67 Fan Z, Liu H, Mayer M, Deng CX. Spatiotemporally controlled single cell sonoporation. Proc. Natl Acad. Sci. USA 109(41), 16486–16491 (2012). • Uses an electrophysiological method (patch-clamp) and fluorescence imaging of a marker dye simultaneously to measure sonoporation of an individual cell by a single bubble in real time.Crossref, Medline, CAS, Google Scholar68 Deng CX, Sieling F, Pan H, Cui J. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30(4), 519–526 (2004).Crossref, Medline, Google Scholar69 Pan H, Zhou Y, Izadnegahdar O, Cui J, Deng CX. Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med. Biol. 31(6), 849–856 (2005).Crossref, Medline, Google Scholar70 Zhou Y, Shi J, Cui J, Deng CX. Effects of extracellular calcium on cell membrane resealing in sonoporation. J. Control. Release 126(1), 34–43 (2008).Crossref, Medline, CAS, Google Scholar71 McNeil PL, Miyake K, Vogel SS. The endomembrane requirement for cell surface repair. Proc. Natl Acad. Sci. USA 100(8), 4592–4597 (2003).Crossref, Medline, CAS, Google Scholar72 McNeil PL, Kirchhausen T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6(6), 499–505 (2005).Crossref, Medline, CAS, Google Scholar73 Hassan MA, Campbell P, Kondo T. The role of Ca2+ in ultrasound-elicited bioeffects: progress, perspectives and prospects. Drug Discov. Today 15(21–22), 892–906 (2010). • Provides a critical review of the literature regarding ultrasound-induced calcium transients and other bioeffects.Crossref, Medline, CAS, Google Scholar74 Kumon RE, Aehle M, Sabens D et al. Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med. Biol. 35(3), 494–506 (2009).Crossref, Medline, CAS, Google Scholar75 Guzman HR, Nguyen DX, Mcnamara AJ, Prausnitz MR. Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy. J. Pharm. Sci. 91(7), 1693–1701 (2002).Crossref, Medline, CAS, Google Scholar76 Meijering BD, Juffermans LJ, Van Wamel A. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res. 104(5), 679–687 (2009). • Provides compelling evidence showing that ultrasound exposure in the presence of microbubbles can induce endocytosis of macromolecules.Crossref, Medline, CAS, Google Scholar77 Duvshani-Eshet M, Adam D, Machluf M. The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J. Control. Release 112(2), 156–166 (2006).Crossref, Medline, CAS, Google Scholar78 Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Ultrasound-mediated gene delivery: Kinetics of plasmid internalization and gene expression. J. Control. Release 104(1), 203–211 (2005).Crossref, Medline, CAS, Google Scholar79 Tlaxca JL, Anderson CR, Klibanov AL et al. Analysis of in vitro transfection by sonoporation using cationic and neutral microbubbles. Ultrasound Med. Biol. 36(11), 1907–1918 (2010).Crossref, Medline, Google Scholar80 Escoffre JM, Teissie J, Rols MP. Gene transfer: how can the biological barriers be overcome? J. Membr. Biol. 236(1), 61–74 (2010).Crossref, Medline, CAS, Google Scholar81 Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J. Control. Release 108(2–3), 513–528 (2005).Crossref, Medline, CAS, Google Scholar82 Lindell J, Girard P, Muller N, Jordan M, Wurm F. Calfection: a novel gene transfer method for suspension cells. Biochim. Biophys. Acta 1676(2), 155–161 (2004).Crossref, Medline, CAS, Google Scholar83 Hassan MA, Ahmed IS, Campbell P, Kondo T. Enhanced gene transfection using calcium phosphate co-precipitates and low-intensity pulsed ultrasound. Eur. J. Pharm. Sci. 47(4), 768–773 (2012).Crossref, Medline, CAS, Google Scholar84 Geers B, Lentacker I, Alonso A et al. Elucidating the mechanisms behind sonoporation with adeno-associated virus-loaded microbubbles. Mol. Pharm. 8(6), 2244–2251 (2011).Crossref, Medline, CAS, Google Scholar85 Yudina A, Moonen C. Ultrasound-induced cell permeabilisation and hyperthermia: strategies for local delivery of compounds with intracellular mode of action. Int. J. Hyperthermia 28(4), 311–319 (2012).Crossref, Medline, CAS, Google Scholar86 Escoffre JM, Zeghimi A, Novell A, Bouakaz A. In vivo gene delivery by sonoporation: recent progress and prospects. Curr. Gene Ther. 13(1), 2–14 (2013).Crossref, Medline, CAS, Google Scholar87 Deng CX. Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther. Deliv. 1(6), 819–848 (2010).Link, CAS, Google Scholar88 Burgess A, Hynynen K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem. Neurosci. 4(4), 519–526 (2013).Crossref, Medline, CAS, Google Scholar89 Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system. Adv. Drug Deliv. Rev. 60(10), 1177–1192 (2008).Crossref, Medline, CAS, Google Scholar90 Meairs S, Kern R, Alonso A. Why and how do microbubbles enhance the effectiveness of diagnostic and therapeutic interventions in cerebrovascular disease? Curr. Pharm. Des. 18(15), 2223–2235 (2012).Crossref, Medline, CAS, Google Scholar91 Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60(10), 1193–1208 (2008).Crossref, Medline, CAS, Google Scholar92 Sonoda S, Tachibana K, Uchino E et al. Inhibition of melanoma by ultrasound-microbubble-aided drug delivery suggests membrane permeabilization. Cancer Biol. Ther. 6(8), 1276–1283 (2007).Crossref, Medline, CAS, Google Scholar93 Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3), 640–646 (2001).Crossref, Medline, CAS, Google Scholar94 Deng CX, Huang X. Improved outcome of targeted delivery of chemotherapy drugs to the brain using a combined strategy of ultrasound, magnetic targeting and drug-loaded nanoparticles. Ther. Deliv. 2(2), 137–141 (2011).Link, Google Scholar95 Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int. J. Cancer 121(4), 901–907 (2007).Crossref, Medline, CAS, Google Scholar96 Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol. Ther. 18(1), 101–108 (2010).Crossref, Medline, CAS, Google Scholar97 Liu HL, Hua MY, Yang HW et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl Acad. Sci. USA 107(34), 15205–15210 (2010).Crossref, Medline, CAS, Google Scholar98 Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8(8), 573–587 (2007).Crossref, Medline, CAS, Google Scholar99 Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res. 132(1–2), 1–14 (2008).Crossref, Medline, CAS, Google Scholar100 Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 17(3), 295–304 (2010).Crossref, Medline, CAS, Google Scholar101 Li YS, Davidson E, Reid CN, McHale AP. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: potential applications for gene therapy of cancer. Cancer Lett. 273(1), 62–69 (2009).Crossref, Medline, CAS, Google Scholar102 Haag P, Frauscher F, Gradl J et al. Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J. Steroid Biochem. Mol. Biol. 102(1–5), 103–113 (2006).Crossref, Medline, CAS, Google Scholar103 Escoffre JM, Novell A, Piron J, Zeghimi A, Doinikov A, Bouakaz A. Microbubble attenuation and destruction: are they involved in sonoporation efficiency? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(1), 46–52 (2013).Crossref, Medline, Google Scholar104 Tlaxca JL, Rychak JJ, Ernst PB et al. Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. J. Control. Release 165(3), 216–225 (2013).Crossref, Medline, CAS, Google Scholar105 Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208), 239–247 (1995).Crossref, Medline, CAS, Google Scholar106 Bers DM. Cardiac excitation-contraction coupling. Nature 415(6868), 198–205 (2002).Crossref, Medline, CAS, Google Scholar107 Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4(7), 517–529 (2003).Crossref, Medline, CAS, Google Scholar108 Kumon RE, Aehle M, Sabens D, Parikh P, Kourennyi D, Deng CX. Ultrasound-induced calcium oscillations and waves in Chinese hamster ovary cells in the presence of microbubbles. Biophys. J. 93(6), L29–31 (2007).Crossref, Medline, CAS, Google Scholar109 Juffermans LJ, van Dijk A, Jongenelen CA et al. Ultrasound and microbubble-induced intra- and intercellular bioeffects in primary endothelial cells. Ultrasound Med. Biol. 35(11), 1917–1927 (2009).Crossref, Medline, Google Scholar110 Park J, Fan Z, Kumon RE, El-Sayed ME, Deng CX. Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med. Biol. 36(7), 1176–1187 (2010).Crossref, Medline, Google Scholar111 Park J, Fan Z, Deng CX. Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells. J. Biomech. 44(1), 164–169 (2011).Crossref, Medline, Google Scholar112 Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258(5080), 292–295 (1992).Crossref, Medline, CAS, Google Scholar113 Sauer H, Hescheler J, Wartenberg M. Mechanical strain-induced Ca2+ waves are propagated via ATP release and purinergic receptor activation. Am. J. Physiol. Cell Physiol. 279(2), C295–307 (2000).Crossref, Medline, CAS, Google Scholar114 Schlicher RK, Hutcheson JD, Radhakrishna H, Apkarian RP, Prausnitz MR. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation. Ultrasound Med. Biol. 36(4), 677–692 (2010).Crossref, Medline, Google Scholar115 Hutcheson JD, Schlicher RK, Hicks HK, Prausnitz MR. Saving cells from ultrasound-induced apoptosis: quantification of cell death and uptake following sonication and effects of targeted calcium chelation. Ultrasound Med. Biol. 36(6), 1008–1021 (2010).Crossref, Medline, CAS, Google Scholar116 Feril LB, Jr., Kondo T, Zhao QL et al. Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med. Biol. 29(2), 331–337 (2003).Crossref, Medline, Google Scholar117 Honda H, Kondo T, Zhao QL, Feril LB, Jr., Kitagawa H. Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med. Biol. 30(5), 683–692 (2004).Crossref, Medline, Google Scholar118 Feril LB, Jr., Kondo T, Cui ZG et al. Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett. 221(2), 145–152 (2005).Crossref, Medline, CAS, Google Scholar119 Zhong W, Sit WH, Wan JM, Yu AC. Sonoporation induces apoptosis and cell cycle arrest in human promyelocytic leukemia cells. Ultrasound Med. Biol. 37(12), 2149–2159 (2011).Crossref, Medline, Google Scholar120 Frampton JP, Fan Z, Simon A, Chen D, Deng CX, Takayama S. Aqueous two-phase system patterning of microbubbles: Localized induction of apoptosis in sonoporated cells. Adv. Funct. Mater. 23, 3420–3431 (2013).Crossref, CAS, Google Scholar121 Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, Musters RJ. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BKCa channels. Ultrasound Med. Biol. 34(3), 502–508 (2008).Crossref, Medline, Google Scholar122 Tran TA, Roger S, Le Guennec JY, Tranquart F, Bouakaz A. Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med. Biol. 33(1), 158–163 (2007).Crossref, Medline, CAS, Google Scholar123 Tran TA, Le Guennec JY, Bougnoux P, Tranquart F, Bouakaz A. Characterization of cell membrane response to ultrasound activated microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(1), 43–49 (2008).Crossref, Medline, Google Scholar124 Tran TA, Le Guennec JY, Babuty D, Bougnoux P, Tranquart F, Bouakaz A. On the mechanisms of ultrasound contrast agents-induced arrhythmias. Ultrasound Med. Biol. 35(6), 1050–1056 (2009).Crossref, Medline, Google Scholar125 Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275(3), 1625–1629 (2000).Crossref, Medline, CAS, Google Scholar126 Noriega S, Hasanova G, Subramanian A. The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 197(1), 14–26 (2013).Crossref, Medline, Google Scholar127 Fan Z, Sun Y, Di C et al. Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility. Sci. Rep. 3, 2176 (2013).Crossref, Medline, Google Scholar128 Mayer CR, Geis NA, Katus HA, Bekeredjian R. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin. Drug Deliv. 5(10), 1121–1138 (2008).Crossref, Medline, CAS, Google Scholar129 Rahim A, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD. Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound Med. Biol. 32(8), 1269–1279 (2006).Crossref, Medline, Google Scholar130 Meijering BD, Henning RH, van Gilst WH, Gavrilovic I, Van Wamel A, Deelman LE. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells. J. Drug Target. 15(10), 664–671 (2007).Crossref, Medline, CAS, Google Scholar131 Hansma HG, Vesenka J, Siegerist C et al. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256(5060), 1180–1184 (1992).Crossref, Medline, CAS, Google Scholar132 Furusawa Y, Fujiwara Y, Campbell P et al. DNA double-strand breaks induced by cavitational mechanical effects of ultrasound in cancer cell lines. PLoS ONE 7(1), e29012 (2012).Crossref, Medline, CAS, Google Scholar133 Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65(7), 500–516 (2010).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetailsCited ByThe cellular response to plasma membrane disruption for nanomaterial delivery1 February 2022 | Nano Convergence, Vol. 9, No. 1Ultrasound and nanomaterial: an efficient pair to fight cancer18 March 2022 | Journal of Nanobiotechnology, Vol. 20, No. 1Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cellsInternational Journal of Pharmaceutics: X

Referência(s)