Revisão Revisado por pares

Bile acid transport systems as pharmaceutical targets

1996; Wiley; Volume: 26; Issue: 9 Linguagem: Inglês

10.1111/j.1365-2362.1996.tb02383.x

ISSN

1365-2362

Autores

Werner Kramer, Günther Wess,

Tópico(s)

Amino Acid Enzymes and Metabolism

Resumo

European Journal of Clinical InvestigationVolume 26, Issue 9 p. 715-732 Bile acid transport systems as pharmaceutical targets W. KRAMER, Corresponding Author W. KRAMER Hoechst Aktiengesellschaft, Frankfurt am Main, GermanyHoechst Aktiengesellschaft, TD Metabolic Diseases, D-65926 Frankfurt am Main, Germany.Search for more papers by this authorG. WESS, G. WESS Hoechst Aktiengesellschaft, Frankfurt am Main, GermanySearch for more papers by this author W. KRAMER, Corresponding Author W. KRAMER Hoechst Aktiengesellschaft, Frankfurt am Main, GermanyHoechst Aktiengesellschaft, TD Metabolic Diseases, D-65926 Frankfurt am Main, Germany.Search for more papers by this authorG. WESS, G. WESS Hoechst Aktiengesellschaft, Frankfurt am Main, GermanySearch for more papers by this author First published: September 1996 https://doi.org/10.1111/j.1365-2362.1996.tb02383.xCitations: 61AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Crommelin DJA, Storm G. Drug Targeting in Comprehensive Medicinal Chemistry. Pergamon Press, 1990;Vol 5: 661–701. 2 Prescott LF, Nimmo WS. Novel Drug Delivery and its Therapeutic Application. John Wiley & Sons, 1989. 3 Meijer DKF. In: SG Schultz, JG Fork, BB Rauner, eds. Handbook of Physiology, Vol. III. New York : Oxford University Press, 1989: 717–58. 4 Meijer DKF. Cell-specific targeting of drugs in the liver: cell biological options and therapeutic perspectives. In: F Wehner, E Petzinger, eds. Cell Biology and Molecular Basis of Liver Transport. Dortmund : Project Verlag, 1995: 171–91. 5 van Berkel TJC, Rensen PCN, van Dijk MCM, Bijsterbosch MK. Neolipoproteins and hepatic drug delivery. In: F Wehner, E Petzinger, eds. Cell Biology and Molecular Basis of Liver Transport. Dortmund : Project Verlag, 1995: 200–7. 6 Frese J Jr, Wu CH, Wu GY. Targeting of genes to the liver with glycoprotein carriers. Adv Drug Deliv Rev 1994; 14: 137–52. 7 Wagner E, Curiel D, Cotten M. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv Drug Deliv Rev 1994; 14: 113–35. 8 Seymour LW. Soluble polymers for lectin-mediated drug targeting. Adv Drug Deliv Rev 1994; 14: 89–111. 9 Fiume L, Busi C, Di Stefano G, Mattioli A. Targeting of antiviral drugs to the liver using glycoprotein carriers. Adv Drug Deliv Rev 1994; 14: 51–65. 10 Monsigny M, Roche A-C, Midoux P, Mayer R. Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes. Adv Drug Deliv Rev 1994; 14: 1–24. 11 Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes. Adv Drug Deliv Rev 1989; 4: 49–63. 12 Tolleshaug H, Chindemi PA, Regoeczi E. Diacytosis of human asialotransferrin type 3 by isolated rat hepatocytes. J Biol Chem 1981; 256: 6525–8. 13 Simmons CF, Schwartz AL. Cellular pathways of galactose-terminal ligand movement in a cloned human hepatoma cell line. Mol Pharmacol 1984; 26: 509–19. 14 Carey MC, Cahalane MJ. Enterohepatic circulation. In: IM Arias, WB Jakoby, H Popper, D Schachter, DA Shafritz, eds. The Liver: Biology and Pathobiology, 2nd edn. New York : Raven Press, 1988: 573–616. 15 Vlahcevic ZR, Heuman DM, Hylemon PB, Physiology and pathophysiology of enterohepatic circulation of bile acids. In: D Zakim. TD Boyer, eds. Hepatology. Philadelphia : Saunders, 1990: 341–77. 16 Lack L, Weiner IM. Intestinal bile salt transport: structure-activity relationships and other properties. Am J Physiol 1966; 210: 1142–52. 17 Firpi A, Walker JT, Lack L. Interactions of cationic bile salt derivatives with the ileal bile salt transport system. J Lipid Res 1975; 16: 379–85. 18 Bundy R, Mauskopf J, Walker JT, Lack L. Interaction of uncharged bile salt derivatives with the ileal bile salt transport system. J Lipid Res 1977; 18: 389–95. 19 Lack, L, Weiner IM. The ileal bile salt transport system: Effect of the charged state of the substrate on activity. Biochim Biophys Acta 1967; 135: 1065–8. 20 Singletary WV Jr, Walker JT, Lack L. Ileal transport of bile acids conjugated with norleucine and lysine. Biochim Biophys Acta 1972; 266: 238–45. 21 DeWitt EH, Lack L. Effects of sulfation patterns on intestinal transport of bile salt sulfate esters. Am J Physiol 1980; 238: G34–G39. 22 Lack L, Tantawi A, Halery C, Rockett D. Positional requirements for anionic charge for ileal absorption of bile salt analogues. Am J Physiol 1984; 246: G745–G749. 23 Lack L. Properties and biological significance of the ileal bile salt transport system. Environ Health Perspect 1979; 33: 79–90. 24 Kramer W, Nicol S-B, Girbig F, Gutjahr U, Kowalewski S, Fasold H. Characterization and chemical modification of the Na+-dependent bile acid transport system in brush-border membrane vesicles from rabbit ileum. Biochim Biophys Acta 1992; 1111: 93–102. 25 Wess G, Kramer W, Enhsen A et al. Specific inhibitors of ileal bile acid transport. J Med Chem 1994; 37: 873–5. 26 Hardison WGM, Heasley VL, Shellhamer DF. Specificity of the hepatocyte Na+-dependent taurocholate transporter: Influence of side chain length and charge. Hepatology 1981; 13: 68–72. 27 Anwer MS, O'Maille ERL, Hofmann AF, DiPietro RA, Michelotti E. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am J Physiol 1985; 249: G479–G488. 28 Kramer W, Girbig F, Gutjahr U et al. Intestinal bile acid absorption: Na+-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93 kDa and a peripheral 14 kDa bile acid-binding membrane protein along the duodenum—ileum axis. J Biol Chem 1993; 268: 18035–46. 29 Kramer W. Die Identifizierung gallensäurebindender Polypeptide durch Photoaffinitätsmarkierung. Synthese und Anwendung photolabiler Derivate der Gallensäuren. Inaugural Dissertation ( PhD thesis), Universität Freiburg, 1981: 1–316. 30 Kramer W, Kurz G, Photolabile derivatives of bile salts. Synthesis and suitability for photoaffinity labeling. J Lipid Res 1983; 24: 910–23. 31 Kramer W, Schneider S. 3-Diazirine-derivatives of bile salts for photoaffinity labeling. J Lipid Res 1989; 30: 1281–8. 32 Henderson CJ, Percy-Robb IW. Synthesis and characterization of an iodinated bile-salt derivative for photoaffinity labeling. Biochim Biophys Acta 1984; 795: 257–64. 33 Schneider S, Fuchte K, Kramer W, Buscher H-P, Gerok W, Kurz G. Fluorescent derivatives for the investigation of bile salt transport under normal and cholestatic conditions. 16th Meeting of the European Association for the Study of the liver, Lissabon, September 1981; Abstract 3. 34 Buscher H-P, Gerok W, Kurz G, Schneider S. Visualization of bile salt transport with fluorescent derivatives. In: Enterohepatic circulation of bile acids and sterol metabolism. G Paumgartner, A Stiehl, W Gerok, eds. Lancaster : MTP Press, 1985: 243–7. 35 Schneider S, Schramm U, Schreyer A, Buscher H-P, Gerok W, Kurz G. Fluorescent derivatives of bile salts. I. Synthesis and properties of NBD-amino derivatives of bile salts. J Lipid Res 1991; 32: 1755–67. 36 Schramm U, Dietrich A, Schneider S, Buscher H-P, Gerok W, Kurz G. Fluorescent derivatives of bile salts. II. Suitability of NBD-amino derivatives of bile salts for the study of biological transport. J Lipid Res 1991; 32: 1769–79. 37 Crawford JM, Lin YJ, Teicher BA, Narciso JP, Gollan JL. Physical and biological properties of dansylated bile salt derivatives: the role of steroid ring hydroxylation. Biochim Biophys Acta 1991; 1085: 223–4. 38 Berczeller A. Bile acid derivatives of arylsulfonamides. United States Patent 2,441,129, 1948. 39 Ho NFH. Utilizing bile acid carrier mechanisms to enhance liver and small intestine absorption. Ann NY Acad Sci 1987; 907: 315–29. 40 Spenney JG, Johnson BJ, Hirschowitz BI, Mihas AA, Gibson R. An 125I radioimmunoassay for primary conjugated bile salts. Gastroenterology 1977; 72: 305–11. 41 Spenney JG, Tobin MM, Mihas AA et al. Utilization of a radioiodinated bile salt for kinetic studies and hepatic scintigraphy. Studies in nonhuman mammals. Gastroenterology 1979; 76: 272–8. 42 Jones AL, Hradek GT, Renston RH, Wong KY, Karlaganis G, Paumgartner G. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am J Physiol 1980; 238: G233–G237. 43 Mills CO, Iqbal S, Elias E. Selectively reduced biliary excretion of cholyldiglycyl-histamine but not of cholyltetraglycylhistamine in ethinyl estradiol-treated rats. J Hepatol 1989; 1: 199–210. 44 Lalezari I. Nucleoside ester compositions. United States Patent 4,418,059, 1983. 45 Manoharan M, Johnson LK, McGee DPC et al. Chemical modifications to improve uptake and bioavailability of antisense oligonucleotides. Ann NY Acad Sci 1992; 660: 306–9. 46 Manoharan M, Johnson LK, Bennett CF et al. Cholic acid-oligonucleotide conjugates for antisense applications. Biorg Med Chem Lett 1994; 4: 1053–60. 47 Maglora LM, Jackson AM, Meng X-J et al. Transport characteristics of three fluorescent conjugated bile acid analogues in isolated hepatocytes and couplets. Hepatology 1995; 22: 637–47. 48 Mills CO, Rahman K, Coleman R, Elias E. Cholyl-lysylfluorescein: Synthesis, biliary excretion in vivo and during single-pass perfusions of isolated perfused rat liver. Biochim Biophys Acta 1991; 1115: 151–6. 49 Mills CO, Elias E. Biliary excretion of chenodeoxycholyllysylrhodamine in Wistar rats: a possible role of a bile acid as a carrier for drugs. Biochim Biophys Acta 1992; 1126: 35–40. 50 Boyd GS, Oliver MF. Various effects of thyroxine analogues on the heart and serum cholesterol in man. J Endocrinol 1960; 21: 25–32. 51 Hanson P, Valdermarsson S, Nilsson-Ehle P. Experimental hyperthyroidism in man: Effects on plasma lipoproteins, lipoprotein lipase and hepatic disease. Horm Metab Res 1983; 15: 449–52. 52 Pontecorvi A, Robbins J. The plasma membrane and thyroid hormone entry into cells. Trends Endocrinol Metab 1989; 8: 91–6. 53 Stephan ZF, Yurachek EC, Sharif R. Wasrary JM, Steele RE, Howes C. Reduction of cardiovascular and thyroxine-suppressing activities of L-T3 by liver targeting with cholic acid. Biochem Pharmacol 1992; 43: 1969–74. 54 Suchy FJ, Balistreri WF, Hung J, Miller P, Garfield SA. Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am J Physiol 1983; 245: G681–G689. 55 Mills CO, Iqbal S, Elias E. Synthesis and biliary excretion of tyrosine-conjugated bile salts in Wistar rats. Biochim Biophys Acta 1986; 876: 667–76. 56 Mills CO, Iqbal S, Elias E. Ileal absorption of tyrosine-conjugated bile acids in Wistar rats. Biochim Biophys Acta 1987; 926: 154–9. 57 Sherman IA, Fisher MM. Hepatic transport of fluorescent molecules: In vivo studies using intravital TV microscopy. Hepatology 1986; 6: 444–9. 58 Schteingart CD, Eming S, Ton-Nu H-T, Crombie DL, Hofmann AF. Synthesis, structure and transport properties of fluorescent derivatives of conjugated bile acids. In: G Paumgartner, A Stiehl, W Gerok, eds. Bile Acid and the Hepatobiliary System. From Basic Science to Clinical Practice. Dordrecht : Kluwer Academic Publishers, 1993: 177–83. 59 Hatono S, Yoshida H, Matsunami M et al. Absorption, biliary excretion and metabolism of a new cholelitholytic agent, ursodeoxycholyl-N-carboxymethyl-glycine and its esters in rats. J Pharmacobiol Dyn 1991; 14: 561–6. 60 Betebenner DA, Carney PL, Zimmer AM et al. Hepatobiliary delivery of polyaminopolycarboxylate chelates: Synthesis and characterization of a cholic acid conjugate of EDTA and biodistribution and imaging studies with its Indium-111 cholate. Bioconjugate Chem 1991; 2: 117–23. 61 Gotto AM Jr, La Rosa JC, Hunninghake D et al. The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. Circulation 1990; 81: 1721–33. 62 Scandinavian Simvastatin Survival Study Group: Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9. 63 Kramer W, Wess G, Enhsen A et al. Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1994; 1227: 137–54. 64 Menear KA, Patel D, Clay V, Howes C, Taylor PW. A novel approach to the site specific delivery of potential HMG-CoA reductase inhibitors. Biorg Med Chem Lett 1992; 2: 285–90. 65 Wess G, Kramer W, Han XB et al. Synthesis and biological activity of bile acid-derived HMG-CoA reductase inhibitors. The role of 21-methyl in recognition of HMG-CoA reductase and the ileal bile acid transport system. J Med. Chem. 1994; 37: 3240–6. 66 Kramer W, Wess G, Enhsen A et al. Bile acid transport systems as pharmaceutical targets: In: U Beuers, G Paumgartner, eds. Bile acids in Liver Diseases. Dordrecht : Kluwer Academic Publishers, 1995: 123–38. 67 McGarry DG, Volz FA, Regan JR, Chang MN. Compounds having hypocholesterolemic properties. United States Patent, 5,216,015, 1993. 68 Kramer W, Wess G, European Patent Application EP 0417725 A2. 69 Wess G, Kramer W, Bartmann W et al. Modified bile acids: preparation of 7α, 12α-dihydroxy-3β- and 1α, 12α-dihydroxy-3α (2-hydroxyethoxy)-5β-cholanic acid and their biological activity. Tetrahedron Lett 1992; 33: 195–8. 70 Wess G, Kramer W, Enhsen A et al. Preparation of 3α-and 3β-(ω-aminoalkoxy)-7α, 12α-dihydroxy-5β-cholanoic acid esters: versatile shuttles for drug targeting. Tetrahedron Lett 1992; 34: 817–18. 71 Wess G, Kramer W, Schubert G et al. Synthesis of bile acid drug conjugates: Potential drug-shuttles for liver-specific targeting. Tetrahedron Lett 1992; 34: 819–22. 72 Hill BT, Riches PG. The absorption, distribution and excretion of 3H-chlorambucil in rats bearing the Yoshida ascites sarcoma. Br J Cancer 1971; 25: 831–7. 73 Niculescu-Duvaz I, Elian I, Ionescu M, Tärnäuceanu E. New urethanic type nitrogen mustards derived from steroidic structures. J Prakt Chemie 1979; 321: 522–8. 74 Hatano S, Yazaki A, Yoshida S. Bile acid derivatives and production thereof. European Patent Application EP 0232 788 A1. 75 Kramer W, Wess G, Schubert G et al. Liver-specific drug targeting by coupling to bile acids. J Biol Chem 1992; 267: 18598–603. 76 Kramer W, Wess G, Schubert G et al. Bile acids as carriers for drugs. In G Paumgartner, A Stiehl, W Gerok, eds. Bile Acids and the Hepatobiliary System. From Basic Science to Clinical practice. Dordrecht : Kluwer Academic Publishers, 1993: 161–76. 77 Buscher H-P, Gerok W, Kurz G, Schramm U, Thom H. Hepatocyte primary culture and bile salt transport. In: G Paumgartner, A Stiehl, W Gerok, eds. Trends in Bile Acid Research. Lancaster , UK : MTP Press, 1988: 133–42. 78 Petzinger E, Nickau L, Horz JA et al. Hepatobiliary transport of hepatic hydroxymethyl glutaryl Coenzyme A reductase inhibitors conjugated with bile acids. Hepatology 1995; 22: 1801–11. 79 Schulz S. Zur Nutzbarkeit des multispezifischen Gallensäure transportsystems für ein carrier-vermitteltes Drug Targeting-Konzept. Inaugural Dissertation, Universität Gießen, 1993. 80 Kramer W, Wess G, Neckermann G et al. Intestinal absorption of peptides by coupling to bile acids. J Biol Chem 1994; 269: 10621–7. 81 Kramer W, Wess G, Bickel M et al. Peptide delivery by coupling to bile acids. In H Fromm, U Leuschner, eds. Bile Acids — Cholestasis — Gallstones. Dordrecht : Kluwer Academic Publishers, 1995: 60–77. 82 Lochs H, Morse EL, Adibi SA. Mechanism of hepatic assimilation of dipeptides. Transport vs. hydrolysis. J Biol Chem 1986: 261: 14976–81. 83 Benson GM, Hickey DMB. Bile acid sequestrants: past and future. Current Drugs: Antiatherosclerotic Agents. 1991; B 43–59. 84 Buchwald H, Matts JP, Fitch, LL et al. and the POSCH Group. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. N Engl J Med 1990; 323: 946–55. 85 Buchwald H, Matts JP. Fitch LL et al. and the POSCH Group. Changes in sequential coronary arteriograms and subsequent coronary events: program on surgical control of the hyperlipidemias (POSCH) group. JAMA 1992; 268: 1429–1433. 86 Kramer W, Girbig F, Gutjahr U, Kowalewski S. Radiation inactivation analysis of the Na+/bile acid cotransport system from rabbit ileum. Biochem J 1994; 306: 241–6. 87 Kramer W, Girbig F, Gutjahr U. et al. Subunit composition of the Na+/bile acid cotransport system from rabbit ileum. Hepatology. 1993; 18: 299 A. 88 Kramer W, Wess G, Baringhaus K-H et al. Design and properties of ileal bile acid transport inhibitors. In AF Hofmann, G Paumgartner, A Stiehl, eds. Bile Acids in Gastroenterology. Basic and Clinical Advances. Dordrecht : Kluwer Academic Publishers, 1995: 205–20. 89 Wess G, Enhsen A, Kramer W. Gallensäuren: Wiederentdeckt. Nachr Chem Tech Lab. 1995; 43: 1047–1055. Citing Literature Volume26, Issue9September 1996Pages 715-732 ReferencesRelatedInformation

Referência(s)