Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies
2005; Wiley; Volume: 5; Issue: 18 Linguagem: Inglês
10.1002/pmic.200500042
ISSN1615-9861
AutoresHisako Iwabata, Minoru Yoshida, Yasuhiko Komatsu,
Tópico(s)Peptidase Inhibition and Analysis
ResumoPROTEOMICSVolume 5, Issue 18 p. 4653-4664 Regular Article Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies Hisako Iwabata, Hisako Iwabata R&D Division, Advanced Life Science Institute, Maruyamadai, Wako, Saitama, Japan CREST Research Project, Japan Science and Technology Agency, Saitama, JapanSearch for more papers by this authorMinoru Yoshida, Minoru Yoshida CREST Research Project, Japan Science and Technology Agency, Saitama, Japan Chemical Genetics Laboratory, RIKEN, Hirosawa, Wako, Saitama, JapanSearch for more papers by this authorYasuhiko Komatsu Dr., Corresponding Author Yasuhiko Komatsu Dr. [email protected] R&D Division, Advanced Life Science Institute, Maruyamadai, Wako, Saitama, Japan CREST Research Project, Japan Science and Technology Agency, Saitama, JapanR&D Division, Advanced Life Science Institute, 2–10–23 Maruyamadai, Wako, Saitama 351–0112, Japan Fax: +81-48-465-2765===Search for more papers by this author Hisako Iwabata, Hisako Iwabata R&D Division, Advanced Life Science Institute, Maruyamadai, Wako, Saitama, Japan CREST Research Project, Japan Science and Technology Agency, Saitama, JapanSearch for more papers by this authorMinoru Yoshida, Minoru Yoshida CREST Research Project, Japan Science and Technology Agency, Saitama, Japan Chemical Genetics Laboratory, RIKEN, Hirosawa, Wako, Saitama, JapanSearch for more papers by this authorYasuhiko Komatsu Dr., Corresponding Author Yasuhiko Komatsu Dr. [email protected] R&D Division, Advanced Life Science Institute, Maruyamadai, Wako, Saitama, Japan CREST Research Project, Japan Science and Technology Agency, Saitama, JapanR&D Division, Advanced Life Science Institute, 2–10–23 Maruyamadai, Wako, Saitama 351–0112, Japan Fax: +81-48-465-2765===Search for more papers by this author First published: 12 December 2005 https://doi.org/10.1002/pmic.200500042Citations: 86AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Post-translational lysine-acetylation and -methylation are two major PTMs of lysine residues in proteins. Recently, we established pan-reactive anti-acetyllysine mouse mAbs, which can bind to Nϵ-acetylated lysine residues in various contexts of amino acid sequences. In the present study, we established pan-reactive anti-methyllysine mouse mAbs comparable to the anti-acetyllysine ones. By using these anti-acetyllysine and -methyllysine antibodies, we found that the pattern of lysine-acetylated and -methylated proteins in mouse organs showed extreme variation from organ to organ. We selected brain and skeletal muscle as model cases to be further analyzed by 2-DE followed by Western blotting. In brain, α-tubulin at its basal level was found to be extremely acetylated; and α-enolase was shown to be a newly recognized possibly acetylated protein. NF-L protein, Hsc70, α-tubulin fragments, β-actin, and brain-type creatine kinase were identified as putative lysine-methylated proteins in mouse brain. In skeletal muscle, lysine-methylation of α-actin and both lysine-acetylation and -methylation of muscle-type creatine kinase were found as novel putative lysine-modified proteins. The approach presented here might be useful to find novel disease markers and/or drug target molecules that would not be noticed by use of the traditional proteomic approach only. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2120/2005/pro0042_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 Gu, W., Roeder, R. G., Cell 1997, 90, 595–606. 10.1016/S0092-8674(00)80521-8 CASPubMedWeb of Science®Google Scholar 2 Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T. et al., Genes Dev. 1998, 12, 2831–2841. 10.1101/gad.12.18.2831 CASPubMedWeb of Science®Google Scholar 3 Liu, L., Scolnick, D. M., Trievel, R. C., Zhang, H. B. et al., Mol. Cell. Biol. 1999, 19, 1202–1209. 10.1128/MCB.19.2.1202 CASPubMedWeb of Science®Google Scholar 4 Luo, J., Su, F., Chen, D., Shiloh, A., Gu, W., Nature 2000, 408, 377–381. 10.1038/35042612 CASPubMedWeb of Science®Google Scholar 5 Juan, L. J., Shia, W. J., Chen, M. H., Yang, W. M. et al., J. Biol. Chem. 2000, 275, 20436–20443. 10.1074/jbc.M000202200 CASPubMedWeb of Science®Google Scholar 6 Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I. et al., Cell 2001, 107, 149–159. 10.1016/S0092-8674(01)00527-X CASPubMedWeb of Science®Google Scholar 7 Luo, J., Nikolaev, A. Y., Imai, S., Chen, D. et al., Cell 2001, 107, 137–148. 10.1016/S0092-8674(01)00524-4 CASPubMedWeb of Science®Google Scholar 8 MacRae, T. H., Eur. J. Biochem. 1997, 244, 265–278. 10.1111/j.1432-1033.1997.00265.x CASPubMedWeb of Science®Google Scholar 9 Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y. et al., Nature 2002, 417, 455–458. 10.1038/417455a CASPubMedWeb of Science®Google Scholar 10 Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A. et al., EMBO J. 2002, 21, 6820–6831. 10.1093/emboj/cdf682 CASPubMedWeb of Science®Google Scholar 11 Bannister, A. J., Miska, E. A., Gorlich, D., Kouzarides, T., Curr. Biol. 2000, 10, 467–470. 10.1016/S0960-9822(00)00445-0 CASPubMedWeb of Science®Google Scholar 12 Costanzo, A., Merlo, P., Pediconi, N., Fulco, M. et al., Mol. Cell 2002, 9, 175–186. 10.1016/S1097-2765(02)00431-8 CASPubMedWeb of Science®Google Scholar 13 Boyes, J., Byfield, P., Nakatani, Y., Ogryzko, V., Nature 1998, 396, 594–598. 10.1038/25166 CASPubMedWeb of Science®Google Scholar 14 Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A., Kouzarides, T., EMBO J. 2000, 19, 662–671. 10.1093/emboj/19.4.662 CASPubMedWeb of Science®Google Scholar 15 Vries, R. G., Prudenziati, M., Zwartjes, C., Verlaan, M. et al., EMBO J. 2001, 20, 6095–6103. 10.1093/emboj/20.21.6095 CASPubMedWeb of Science®Google Scholar 16 Zhang, W., Bieker, J. J., Proc. Natl. Acad. Sci. USA 1998, 95, 9855–9860. 10.1073/pnas.95.17.9855 CASPubMedWeb of Science®Google Scholar 17 Yao, Y. L., Yang, W. M., Seto, E., Mol. Cell. Biol. 2001, 21, 5979–5991. 10.1128/MCB.21.17.5979-5991.2001 CASPubMedWeb of Science®Google Scholar 18 Chen, L., Fischle, W., Verdin, E., Greene, W. C., Science 2001, 293, 1653–1657. 10.1126/science.1062374 CASPubMedWeb of Science®Google Scholar 19 Wolf, D., Rodova, M., Miska, E. A., Calvet, J. P., Kouzarides, T., J. Biol. Chem. 2002, 277, 25562–25567. 10.1074/jbc.M201196200 CASPubMedWeb of Science®Google Scholar 20 Soutoglou, E., Katrakili, N., Talianidis, I., Mol. Cell 2000, 5, 745–751. 10.1016/S1097-2765(00)80253-1 CASPubMedWeb of Science®Google Scholar 21 Polesskaya, A., Duquet, A., Naguibneva, I., Weise, C. et al., J. Biol. Chem. 2000, 275, 34359–34364. 10.1074/jbc.M003815200 CASPubMedWeb of Science®Google Scholar 22 Muth, V., Nadaud, S., Grummt, I., Voit, R., EMBO J. 2001, 20, 1353–1362. 10.1093/emboj/20.6.1353 CASPubMedWeb of Science®Google Scholar 23 Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C., La Thangue, N. B., Nat. Cell Biol. 2001, 3, 667–674. 10.1038/35083062 CASPubMedWeb of Science®Google Scholar 24 Bergel, M., Herrera, J. E., Thatcher, B. J., Prymakowska-Bosak, M., J. Biol. Chem. 2000, 275, 11514–11520. 10.1074/jbc.275.15.11514 CASPubMedWeb of Science®Google Scholar 25 Herrera, J. E., Sakaguchi, K., Bergel, M., Trieschmann, L. et al., Mol. Cell. Biol. 1999, 19, 3466–3473. 10.1128/MCB.19.5.3466 CASPubMedWeb of Science®Google Scholar 26 Takei, Y., Swietlik, M., Tanoue, A., Tsujimoto, G. et al., EMBO Rep. 2001, 2, 119–123. 10.1093/embo-reports/kve026 CASPubMedWeb of Science®Google Scholar 27 Kalkhoven, E., Teunissen, H., Houweling, A., Verrijzer, C. P., Zantema, A., Mol. Cell. Biol. 2002, 22, 1961–1970. 10.1128/MCB.22.7.1961-1970.2002 CASPubMedWeb of Science®Google Scholar 28 Creaven, M., Hans, F., Mutskov, V., Col, E. et al., Biochemistry 1999, 38, 8826–8830. 10.1021/bi9907274 CASPubMedWeb of Science®Google Scholar 29 Chen, H., Lin, R. J., Xie, W., Wilpitz, D., Evans, R. M., Cell 1999, 98, 675–686. 10.1016/S0092-8674(00)80054-9 CASPubMedWeb of Science®Google Scholar 30 Bereshchenko, O. R., Gu, W., Dalla-Favera, R., Nat. Genet. 2002, 32, 606–613. 10.1038/ng1018 CASPubMedWeb of Science®Google Scholar 31 Caillaud, A., Prakash, A., Smith, E., Masumi, A. et al., J. Biol. Chem. 2002, 277, 49417–49421. 10.1074/jbc.M207484200 CASPubMedWeb of Science®Google Scholar 32 Bradney, C., Hjelmeland, M., Komatsu, Y., Yoshida, M. et al., J. Biol. Chem. 2003, 278, 2370–2376. 10.1074/jbc.M211464200 CASPubMedWeb of Science®Google Scholar 33 Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D. et al., Nature 2000, 406, 593–599. 10.1038/35020506 CASPubMedWeb of Science®Google Scholar 34 Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T., Nature 2001, 410, 116–120. 10.1038/35065132 CASPubMedWeb of Science®Google Scholar 35 Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A. et al., Nature 2001, 410, 120–124. 10.1038/35065138 CASPubMedWeb of Science®Google Scholar 36 Boggs, B. A., Cheung, P., Heard, E., Spector, D. L. et al., Nat. Genet. 2002, 30, 73–76. 10.1038/ng787 CASPubMedWeb of Science®Google Scholar 37 Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J. et al., Nature 2001, 412, 561–565. 10.1038/35087620 CASPubMedWeb of Science®Google Scholar 38 Peters, A. H., Mermoud, J. E., O'Carroll, D., Pagani, M. et al., Nat. Genet. 2002, 30, 77–80. 10.1038/ng789 CASPubMedWeb of Science®Google Scholar 39 Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T., Brockdorff, N., Curr. Biol. 2002, 12, 247–251. 10.1016/S0960-9822(02)00660-7 CASPubMedWeb of Science®Google Scholar 40 Chuikov, S., Kurash, J. K., Wilson, J. R., Xiao, B. et al., Nature 2004, 432, 353–360. 10.1038/nature03117 CASPubMedWeb of Science®Google Scholar 41 Weihing, R. R., Korn, E. D., Nature 1970, 227, 1263–1264. 10.1038/2271263a0 CASPubMedWeb of Science®Google Scholar 42 Weihing, R. R., Korn, E. D., Biochemistry 1971, 10, 590–600. 10.1021/bi00780a008 CASPubMedWeb of Science®Google Scholar 43 Weihing, R. R., Korn, E. D., Biochemistry 1972, 11, 1538–1543. 10.1021/bi00758a032 CASPubMedWeb of Science®Google Scholar 44 Tong, S. W., Elzinga, M., J. Biol. Chem. 1983, 258, 13100–13110. 10.1016/S0021-9258(17)44086-5 CASPubMedWeb of Science®Google Scholar 45 Dever, T. E., Costello, C. E., Owens, C. L., Rosenberry, T. L., Merrick, W. C., J. Biol. Chem. 1989, 264, 20518–20525. 10.1016/S0021-9258(19)47093-2 CASPubMedWeb of Science®Google Scholar 46 Ames, G. F., Niakido, K., J. Biol. Chem. 1979, 254, 9947–9950. 10.1016/S0021-9258(19)86650-4 CASPubMedWeb of Science®Google Scholar 47 Pethe, K., Bifani, P., Drobecq, H., Sergheraert, C. et al., Proc. Natl. Acad. Sci. USA 2002, 99, 10759–10764. 10.1073/pnas.162246899 CASPubMedWeb of Science®Google Scholar 48 Wang, C., Lazarides, E., Biochem. Biophys. Res. Commun. 1984, 119, 735–743. 10.1016/S0006-291X(84)80312-5 CASPubMedWeb of Science®Google Scholar 49 Martin, K., Steinberg, T. H., Cooley, L. A., Gee, K. R. et al., Proteomics 2003, 3, 1244–1255. 10.1002/pmic.200300445 CASPubMedWeb of Science®Google Scholar 50 Martin, K., Steinberg, T. H., Goodman, T., Schulenberg, B. et al., Comb. Chem. High Throughput Screen. 2003, 6, 331–339. 10.2174/138620703106298581 CASPubMedWeb of Science®Google Scholar 51 Aulak, K. S., Miyagi, M., Yan, L., West, K. A. et al., Proc. Natl. Acad. Sci. USA 2001, 98, 12056–12061. 10.1073/pnas.221269198 CASPubMedWeb of Science®Google Scholar 52 Oda, Y., Nagasu, T., Chait, B. T., Nat. Biotechnol. 2001, 19, 379–382. 10.1038/86783 CASPubMedWeb of Science®Google Scholar 53 Zhou, H., Watts, J. D., Aebersold, R., Nat. Biotechnol. 2001, 19, 375–378. 10.1038/86777 CASPubMedWeb of Science®Google Scholar 54 Nikov, G., Bhat, V., Wishnok, J. S., Tannenbaum, S. R., Anal. Biochem. 2003, 320, 214–222. 10.1016/S0003-2697(03)00359-2 CASPubMedWeb of Science®Google Scholar 55 Komatsu, Y., Yukutake, Y., Yoshida, M., J. Immunol. Methods 2003, 272, 161–175. 10.1016/S0022-1759(02)00500-8 CASPubMedWeb of Science®Google Scholar 56 Komatsu, Y., Iwabata, H., Yoshida, M., in: M. A. Simmons (Ed.), Monoclonal Antibodies: New Research, Nova Science Publishers, New York 2005 (in press). Google Scholar 57 Clauser, K. R., Baker, P., Burlingame, A. L., Anal. Chem. 1999, 71, 2871–2882. 10.1021/ac9810516 CASPubMedWeb of Science®Google Scholar 58 Berger, S. L., Curr. Opin. Genet. Dev. 2002, 12, 142–148. 10.1016/S0959-437X(02)00279-4 CASPubMedWeb of Science®Google Scholar 59 Strahl, B. D., Allis, C. D., Nature 2000, 403, 41–45. 10.1038/47412 CASPubMedWeb of Science®Google Scholar 60 McMurry, J., Organic Chemistry, Brooks/Cole 1992. Google Scholar Citing Literature Volume5, Issue18No. 18 December 2005Pages 4653-4664 ReferencesRelatedInformation
Referência(s)