Artigo Acesso aberto Revisado por pares

Identification of E2F1 as an Important Transcription Factor for the Regulation of Tapasin Expression

2010; Elsevier BV; Volume: 285; Issue: 40 Linguagem: Inglês

10.1074/jbc.m109.094284

ISSN

1083-351X

Autores

Juergen Bukur, F Herrmann, Diana Handke, Christian V. Recktenwald, Barbara Seliger,

Tópico(s)

Cell Adhesion Molecules Research

Resumo

HER-2/neu overexpression in tumor cells caused abnormalities of MHC class I surface expression due to impaired expression of components of the antigen-processing machinery (APM) including the low molecular weight proteins, the transporter associated with antigen processing (TAP), and the chaperone tapasin, whereas the expression of MHC class I heavy chain as well as β2-microglobulin was only marginally affected. This oncogene-mediated deficient APM component expression could be reverted by interferon-γ treatment, suggesting a deregulation rather than structural alterations as underlying molecular mechanisms. To determine the level of regulation, the transcriptional activity of APM components was analyzed in HER-2/neu− and HER-2/neu+ cells. All major APM components were transcriptionally down-regulated in HER-2/neu+ when compared with HER-2/neu− cells, which was accompanied by a reduced binding of RNA polymerase II to the APM promoters. Site-directed mutagenesis of the p300- and E2F-binding sites in the APM promoters did not reconstitute the oncogene-mediated decreased transcription rate with the exception of tapasin, which was restored in HER-2/neu+ cells to levels of wild type tapasin promoter activity in HER-2/neu− fibroblasts. The E2F-directed control of tapasin expression was further confirmed by chromatin immunoprecipitation analyses showing that E2F1 and p300 bind to the tapasin and APM promoters in both cell lines. Moreover, siRNA-mediated silencing of E2F1 was associated with an increased tapasin expression, whereas transient overexpression of E2F1 launch a reduced tapasin transcription, suggesting that E2F1 is an essential transcription factor for tapasin. HER-2/neu overexpression in tumor cells caused abnormalities of MHC class I surface expression due to impaired expression of components of the antigen-processing machinery (APM) including the low molecular weight proteins, the transporter associated with antigen processing (TAP), and the chaperone tapasin, whereas the expression of MHC class I heavy chain as well as β2-microglobulin was only marginally affected. This oncogene-mediated deficient APM component expression could be reverted by interferon-γ treatment, suggesting a deregulation rather than structural alterations as underlying molecular mechanisms. To determine the level of regulation, the transcriptional activity of APM components was analyzed in HER-2/neu− and HER-2/neu+ cells. All major APM components were transcriptionally down-regulated in HER-2/neu+ when compared with HER-2/neu− cells, which was accompanied by a reduced binding of RNA polymerase II to the APM promoters. Site-directed mutagenesis of the p300- and E2F-binding sites in the APM promoters did not reconstitute the oncogene-mediated decreased transcription rate with the exception of tapasin, which was restored in HER-2/neu+ cells to levels of wild type tapasin promoter activity in HER-2/neu− fibroblasts. The E2F-directed control of tapasin expression was further confirmed by chromatin immunoprecipitation analyses showing that E2F1 and p300 bind to the tapasin and APM promoters in both cell lines. Moreover, siRNA-mediated silencing of E2F1 was associated with an increased tapasin expression, whereas transient overexpression of E2F1 launch a reduced tapasin transcription, suggesting that E2F1 is an essential transcription factor for tapasin. IntroductionThe expression of multiple components of the antigen-processing machinery (APM) 2The abbreviations used are: APMantigen-processing machineryβ2-mβ2-microglobulinHCMHC class I heavy chainLMPlow molecular weight proteinlucluciferasemutmutantRNA pol IIRNA polymerase IITAPtransporter associated with antigen processingTFtranscription factorTFBStranscription factor-binding siteCREBcAMP-response element-binding proteinCBPCREB-binding proteinIRFinterferon regulatory transcription factorqRT-PCRquantitative RT-PCRmutmutant. is a prerequisite for constitutive MHC class I surface expression and necessary for recognition of non-self antigens by CD8+ cytotoxic T lymphocytes (1Garbi N. Tanaka S. van den Broek M. Momburg F. Hämmerling G.J. Immunol. Rev. 2005; 207: 77-88Crossref PubMed Scopus (33) Google Scholar, 2Jensen P.E. Nat. Immunol. 2007; 8: 1041-1048Crossref PubMed Scopus (250) Google Scholar, 3Raghavan M. Del Cid N. Rizvi S.M. Peters L.R. Trends Immunol. 2008; 29: 436-443Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar). Abnormalities in the MHC class I surface expression have been described in tumors of distinct origin that allow their escape from immune cell recognition (4Aptsiauri N. Carretero R. Garcia-Lora A. Real L.M. Cabrera T. Garrido F. Cancer Immunol. Immunother. 2008; 57: 1727-1733Crossref PubMed Scopus (49) Google Scholar, 5Rescigno M. Avogadri F. Curigliano G. Biochim Biophys. Acta. 2007; 1776: 108-123PubMed Google Scholar, 6Restifo N.P. Esquivel F. Kawakami Y. Yewdell J.W. Mulé J.J. Rosenberg S.A. Bennink J.R. J. Exp. Med. 1993; 177: 265-272Crossref PubMed Scopus (580) Google Scholar, 7Seliger B. Cancer Immunol. Immunother. 2008; 57: 1719-1726Crossref PubMed Scopus (125) Google Scholar, 8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar). These defects often result in decreased immunogenicity of tumors, disease progression, and reduced survival of patients (9Garrido C. Algarra I. Maleno I. Stefanski J. Collado A. Garrido F. Garcia-Lora A.M. Cancer Immunol. Immunother. 2010; 59: 13-26Crossref PubMed Scopus (23) Google Scholar, 10Lou Y. Vitalis T.Z. Basha G. Cai B. Chen S.S. Choi K.B. Jeffries A.P. Elliott W.M. Atkins D. Seliger B. Jefferies W.A. Cancer Res. 2005; 65: 7926-7933Crossref PubMed Scopus (64) Google Scholar). Recently, the molecular mechanisms underlying altered MHC class I surface expression have been attributed to impaired expression of the low molecular weight proteins (LMP)-2, -7, and -10, the proteasome activator (PA)28, the transporter associated with antigen processing (TAP) 1 and 2, β2-microglobulin (β2-m), and the MHC class I heavy chain (HC).Despite the identification of structural alterations in β2-m, HC, and TAP, which are caused by deletions, mutations, loss of heterozygosity, and/or recombinations, their occurrence is rare (11Cabrera C.M. Jiménez P. Cabrera T. Esparza C. Ruiz-Cabello F. Garrido F. Tissue Antigens. 2003; 61: 211-219Crossref PubMed Scopus (130) Google Scholar, 12Chang C.C. Ogino T. Mullins D.W. Oliver J.L. Yamshchikov G.V. Bandoh N. Slingluff Jr., C.L. Ferrone S. J. Biol. Chem. 2006; 281: 18763-18773Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar, 13Ferrone S. Marincola F.M. Immunol. Today. 1995; 16: 487-494Abstract Full Text PDF PubMed Scopus (455) Google Scholar, 14Maleno I. López-Nevot M.A. Cabrera T. Salinero J. Garrido F. Cancer Immunol. Immunother. 2002; 51: 389-396Crossref PubMed Scopus (82) Google Scholar). Because in most cases MHC class I APM defects could be restored by treatment with proinflammatory and inflammatory cytokines such as tumor necrosis factor (TNF)-α and type I and type II interferons (IFN), their impaired expression appears to be mainly due to deregulation rather than sequence abnormalities (15Epperson D.E. Arnold D. Spies T. Cresswell P. Pober J.S. Johnson D.R. J. Immunol. 1992; 149: 3297-3301PubMed Google Scholar, 16Seliger B. Schreiber K. Delp K. Meissner M. Hammers S. Reichert T. Pawlischko K. Tampé R. Huber C. Tissue Antigens. 2001; 57: 39-45Crossref PubMed Scopus (48) Google Scholar). Epigenetic, transcriptional, and/or posttranscriptional control of several APM components has been described in malignant cells (7Seliger B. Cancer Immunol. Immunother. 2008; 57: 1719-1726Crossref PubMed Scopus (125) Google Scholar). In particular mRNA and/or protein of major APM components, such as TAP1, TAP2, LMP2, LMP7, tapasin, β2-m, and/or HC, was often simultaneously suppressed upon malignant or viral transformation (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar, 18Bennett E.M. Bennink J.R. Yewdell J.W. Brodsky F.M. J. Immunol. 1999; 162: 5049-5052PubMed Google Scholar, 19Delp K. Momburg F. Hilmes C. Huber C. Seliger B. Bone Marrow Transplant. 2000; 25: S88-S95Crossref PubMed Scopus (65) Google Scholar, 20Griffioen M. Steegenga W.T. Ouwerkerk I.J. Peltenburg L.T. Jochemsen A.G. Schrier P.I. Mol. Immunol. 1998; 35: 829-835Crossref PubMed Scopus (16) Google Scholar, 21Hansen T.H. Bouvier M. Nat. Rev. Immunol. 2009; 9: 503-513Crossref PubMed Scopus (270) Google Scholar, 22Rotem-Yehudar R. Groettrup M. Soza A. Kloetzel P.M. Ehrlich R. J. Exp. Med. 1996; 183: 499-514Crossref PubMed Scopus (85) Google Scholar, 23Seliger B. Maeurer M.J. Ferrone S. Immunol. Today. 1997; 18: 292-299Abstract Full Text PDF PubMed Google Scholar, 24Seliger B. Maeurer M.J. Ferrone S. Immunol. Today. 2000; 21: 455-464Abstract Full Text Full Text PDF PubMed Scopus (373) Google Scholar, 25Smahel M. Sobotková E. Bubeník J. Símová J. Zák R. Ludviková V. Hájková R. Kovarík J. Jelínek F. Povýsil C. Marinov J. Vonka V. Br. J. Cancer. 2001; 84: 374-380Crossref PubMed Scopus (37) Google Scholar, 26Vertegaal A.C. Kuiperij H.B. Houweling A. Verlaan M. van der Eb A.J. Zantema A. J. Biol. Chem. 2003; 278: 139-146Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar, 27Vertuani S. Triulzi C. Roos A.K. Charo J. Norell H. Lemonnier F. Pisa P. Seliger B. Kiessling R. Cancer Immunol. Immunother. 2009; 58: 653-664Crossref PubMed Scopus (45) Google Scholar). In addition, methylation and altered histone acetylation were found with a low frequency for β2-m, HC, and TAP1 in tumors and were associated with a decreased MHC class I surface expression (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar, 28Campoli M. Ferrone S. Oncogene. 2008; 27: 5869-5885Crossref PubMed Scopus (284) Google Scholar, 29Khan A.N. Gregorie C.J. Tomasi T.B. Cancer Immunol. Immunother. 2008; 57: 647-654Crossref PubMed Scopus (161) Google Scholar, 30Sers C. Kuner R. Falk C.S. Lund P. Sueltmann H. Braun M. Buness A. Ruschhaupt M. Conrad J. Mang-Fatehi S. Stelniec I. Krapfenbauer U. Poustka A. Schäfer R. Int. J. Cancer. 2009; 125: 1626-1639Crossref PubMed Scopus (64) Google Scholar, 31Setiadi A.F. Omilusik K. David M.D. Seipp R.P. Hartikainen J. Gopaul R. Choi K.B. Jefferies W.A. Cancer Res. 2008; 68: 9601-9607Crossref PubMed Scopus (134) Google Scholar, 32Ye Q. Shen Y. Wang X. Yang J. Miao F. Shen C. Zhang J. Tissue Antigens. 2009; 75: 30-39Crossref PubMed Scopus (41) Google Scholar).So far, detailed information about the control of tapasin expression in murine and human tumor cells is scarce. Tapasin expression has been demonstrated to be down-regulated in breast cancer (16Seliger B. Schreiber K. Delp K. Meissner M. Hammers S. Reichert T. Pawlischko K. Tampé R. Huber C. Tissue Antigens. 2001; 57: 39-45Crossref PubMed Scopus (48) Google Scholar), melanoma (33Dissemond J. Kothen T. Mörs J. Weimann T.K. Lindeke A. Goos M. Wagner S.N. Arch. Dermatol. Res. 2003; 295: 43-49Crossref PubMed Scopus (32) Google Scholar, 34Seliger B. Ritz U. Abele R. Bock M. Tampé R. Sutter G. Drexler I. Huber C. Ferrone S. Cancer Res. 2001; 61: 8647-8650PubMed Google Scholar), colorectal carcinoma (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar, 19Delp K. Momburg F. Hilmes C. Huber C. Seliger B. Bone Marrow Transplant. 2000; 25: S88-S95Crossref PubMed Scopus (65) Google Scholar, 35Cabrera C.M. López-Nevot M.A. Jiménez P. Garrido F. Int. J. Cancer. 2005; 113: 611-618Crossref PubMed Scopus (14) Google Scholar), cervical cancer (36Mehta A.M. Jordanova E.S. Corver W.E. van Wezel T. Uh H.W. Kenter G.G. Jan Fleuren G. Genes Chromosomes Cancer. 2009; 48: 410-418Crossref PubMed Scopus (70) Google Scholar), small cell and non-small cell lung carcinoma (10Lou Y. Vitalis T.Z. Basha G. Cai B. Chen S.S. Choi K.B. Jeffries A.P. Elliott W.M. Atkins D. Seliger B. Jefferies W.A. Cancer Res. 2005; 65: 7926-7933Crossref PubMed Scopus (64) Google Scholar), fibrosarcoma (37Garcia-Lora A. Martinez M. Algarra I. Gaforio J.J. Garrido F. Int. J. Cancer. 2003; 106: 521-527Crossref PubMed Scopus (71) Google Scholar), as well as bladder cancer (38Romero J.M. Jiménez P. Cabrera T. Cózar J.M. Pedrinaci S. Tallada M. Garrido F. Ruiz-Cabello F. Int. J. Cancer. 2005; 113: 605-610Crossref PubMed Scopus (108) Google Scholar). In human colorectal cancers, tapasin expression is even more strongly affected and more frequently lost than TAP1, LMP2, and LMP7 (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar). Thus, tapasin expression might represent a key event in overcoming immune surveillance in these tumors (35Cabrera C.M. López-Nevot M.A. Jiménez P. Garrido F. Int. J. Cancer. 2005; 113: 611-618Crossref PubMed Scopus (14) Google Scholar).Tapasin harbors a central role in the assembly of the peptide-loading complex by stabilizing TAP expression, determining peptide selection, and maintaining an appropriate MHC class I redox status. Although several components of the peptide-loading complex are required for optimal assembly and transport of MHC class I molecules to the surface, TAP and tapasin are essential for an optimized peptide loading to empty MHC class I molecules and their successive presentation to cytotoxic CD8+ T lymphocytes (39Garbi N. Tan P. Diehl A.D. Chambers B.J. Ljunggren H.G. Momburg F. Hämmerling G.J. Nat. Immunol. 2000; 1: 234-238Crossref PubMed Scopus (165) Google Scholar). Studies on the transcriptional regulation mainly focused on HC, β2-m, TAP1, and LMP2 (40Agrawal S. Kishore M.C. J. Hematother Stem. Cell Res. 2000; 9: 795-812Crossref PubMed Scopus (39) Google Scholar, 41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar, 42Wright K.L. White L.C. Kelly A. Beck S. Trowsdale J. Ting J.P. J. Exp. Med. 1995; 181: 1459-1471Crossref PubMed Scopus (203) Google Scholar) and identified different common transcription factors, which are involved in constitutive and IFN-γ induced protein expression. These include (i) CREB for constitutive expression and the IFN-sensitive response element for an IFN-γ-induced expression of the HC (40Agrawal S. Kishore M.C. J. Hematother Stem. Cell Res. 2000; 9: 795-812Crossref PubMed Scopus (39) Google Scholar, 43Gobin S.J. van Zutphen M. Woltman A.M. van den Elsen P.J. J. Immunol. 1999; 163: 1428-1434PubMed Google Scholar, 44Gobin S.J. Wilson L. Keijsers V. Van den Elsen P.J. J. Immunol. 1997; 158: 3587-3592PubMed Google Scholar, 45van den Elsen P.J. Holling T.M. Kuipers H.F. van der Stoep N. Curr. Opin. Immunol. 2004; 16: 67-75Crossref PubMed Scopus (138) Google Scholar, 46van den Elsen P.J. Peijnenburg A. van Eggermond M.C. Gobin S.J. Immunol. Today. 1998; 19: 308-312Abstract Full Text Full Text PDF PubMed Scopus (95) Google Scholar) and the bidirectional TAP1/LMP2 promoter (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar, 41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar) and (ii) the cooperating transcription factors IRF2 and STAT1 for constitutive expression as well as IRF1 and STAT1 for the IFN-γ-mediated enhanced TAP1/LMP2 expression (41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar, 42Wright K.L. White L.C. Kelly A. Beck S. Trowsdale J. Ting J.P. J. Exp. Med. 1995; 181: 1459-1471Crossref PubMed Scopus (203) Google Scholar, 47Brucet M. Marqués L. Sebastián C. Lloberas J. Celada A. Genes Immun. 2004; 5: 26-35Crossref PubMed Scopus (52) Google Scholar, 48Chatterjee-Kishore M. Kishore R. Hicklin D.J. Marincola F.M. Ferrone S. J. Biol. Chem. 1998; 273: 16177-16183Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar, 49Dovhey S.E. Ghosh N.S. Wright K.L. Cancer Res. 2000; 60: 5789-5796PubMed Google Scholar, 50Kishi F. Suminami Y. Monaco J.J. Gene. 1993; 133: 243-248Crossref PubMed Scopus (3) Google Scholar, 51Rouyez M.C. Lestingi M. Charon M. Fichelson S. Buzyn A. Dusanter-Fourt I. J. Immunol. 2005; 174: 3948-3958Crossref PubMed Scopus (41) Google Scholar). A similar regulation pattern was observed for murine TAP2, which is controlled by CREB and IRF for constitutive and/or IFN-γ-controlled activity (52Arons E. Kunin V. Schechter C. Ehrlich R. J. Immunol. 2001; 166: 3942-3951Crossref PubMed Scopus (19) Google Scholar, 53Guo Y. Yang T. Liu X. Lu S. Wen J. Durbin J.E. Liu Y. Zheng P. Int. Immunol. 2002; 14: 189-200Crossref PubMed Scopus (11) Google Scholar).Both the human and the murine tapasin promoters contain one IFN-sensitive response element and two IFNγ-activated sequence motif consensus sequences in the 5′-UTR of the gene (54Abarca-Heidemann K. Friederichs S. Klamp T. Boehm U. Guethlein L.A. Ortmann B. Immunol. Lett. 2002; 83: 197-207Crossref PubMed Scopus (26) Google Scholar, 55Herberg J.A. Sgouros J. Jones T. Copeman J. Humphray S.J. Sheer D. Cresswell P. Beck S. Trowsdale J. Eur. J. Immunol. 1998; 28: 459-467Crossref PubMed Scopus (66) Google Scholar). A study by Herrmann et al. (62Herrmann F. Trowsdale J. Huber C. Seliger B. Immunogenetics. 2003; 55: 379-388Crossref PubMed Scopus (17) Google Scholar) identified NF-κB as a basal transcription factor and a shared IRF1/2-binding site mediating IFN-γ inducibility of tapasin expression in murine cells. Recently, a cytokine-independent up-regulation of APM components by the CD40L-mediated transactivation of TAP1, TAP2, tapasin, LMP2, and LMP10 genes via NF-κB was observed, resulting in a de novo IRF1 synthesis accompanied by activating IRF1 in a STAT1-independent manner (56Moschonas A. Kouraki M. Knox P.G. Thymiakou E. Kardassis D. Eliopoulos A.G. Mol. Cell Biol. 2008; 28: 6208-6222Crossref PubMed Scopus (27) Google Scholar).Despite the transcriptional and posttranscriptional down-regulation of APM components in tumor cells, detailed information about the molecular mechanisms or factors involved in this process is limited or controversially discussed (11Cabrera C.M. Jiménez P. Cabrera T. Esparza C. Ruiz-Cabello F. Garrido F. Tissue Antigens. 2003; 61: 211-219Crossref PubMed Scopus (130) Google Scholar, 38Romero J.M. Jiménez P. Cabrera T. Cózar J.M. Pedrinaci S. Tallada M. Garrido F. Ruiz-Cabello F. Int. J. Cancer. 2005; 113: 605-610Crossref PubMed Scopus (108) Google Scholar, 57Facoetti A. Nano R. Zelini P. Morbini P. Benericetti E. Ceroni M. Campoli M. Ferrone S. Clin. Cancer Res. 2005; 11: 8304-8311Crossref PubMed Scopus (153) Google Scholar, 58Raffaghello L. Prigione I. Bocca P. Morandi F. Camoriano M. Gambini C. Wang X. Ferrone S. Pistoia V. Oncogene. 2005; 24: 4634-4644Crossref PubMed Scopus (80) Google Scholar). In addition, there exists little information about transcription factors modulating the MHC class I APM component expression. Although promyelocytic leukemia protein has been suggested as a general regulator of APM component expression, its role in controlling this pathway is controversially discussed (59Bruno S. Ghiotto F. Fais F. Fagioli M. Luzi L. Pelicci P.G. Grossi C.E. Ciccone E. Blood. 2003; 101: 3514-3519Crossref PubMed Scopus (29) Google Scholar, 60Zheng P. Guo Y. Niu Q. Levy D.E. Dyck J.A. Lu S. Sheiman L.A. Liu Y. Nature. 1998; 396: 373-376Crossref PubMed Scopus (142) Google Scholar). In contrast, the antagonistic transcription factor B lymphocyte-induced maturation protein-1 (PR domain-containing 1 (PRDM1)) has recently been shown to repress the IFN-γ-dependent transcription of ERAP1, tapasin, MECL1, and LMP7, resulting in a failure to up-regulate MHC class I surface antigens in human cell lines (61Doody G.M. Stephenson S. McManamy C. Tooze R.M. J. Immunol. 2007; 179: 7614-7623Crossref PubMed Scopus (34) Google Scholar). Therefore, the aim of this study was to identify factors involved in the HER-2/neu-mediated down-regulation of MHC class I APM components using an in vitro model of oncogenic transformation. We here show for the first time an important role for E2F1 in the transcriptional regulation of tapasin in untransformed and HER-2/neu-transformed fibroblasts.DISCUSSIONA detailed analysis of the APM components in HER-2/neu− versus HER-2/neu+ cells revealed a strong coordinated down-regulation of the expression of several APM components, with the exception of β2-m and HC (63Herrmann F. Lehr H.A. Drexler I. Sutter G. Hengstler J. Wollscheid U. Seliger B. Cancer Res. 2004; 64: 215-220Crossref PubMed Scopus (100) Google Scholar, 67Choudhury A. Charo J. Parapuram S.K. Hunt R.C. Hunt D.M. Seliger B. Kiessling R. Int. J. Cancer. 2004; 108: 71-77Crossref PubMed Scopus (131) Google Scholar). However, the molecular mechanisms involved in the impaired APM component expression in the HER-2/neu+ cells have not yet been identified.By investigating the TAP1, LMP2, TAP2, and tapasin promoter activity, a transcriptional down-regulation of the respective APM promoters was found in HER-2/neu-overexpressing fibroblasts when compared with non-transformed cells varying from 38% (TAP2) to 84% (LMP2). These data were further confirmed by qRT-PCR analyses of HER-2/neu− versus HER-2/neu+ fibroblasts. Based on these results, we postulated that the mRNA levels of APM components could be modulated by (i) an instability of transcription initiation due to the absence of the enhancing transcription factor CBP/p300, which might be limited in oncogene-transformed cells (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar), or the presence of negatively acting suppressors; (ii) a chromatin-mediated physical barrier in HER-2/neu+ cells, thereby reducing the access of the RNA pol II complex to the tapasin promoter; or (iii) the absence of transcription elongation factors, which might control the constitutive transcription level in a gene- or locus-specific manner (70Ares Jr., M. Proudfoot N.J. Cell. 2005; 120: 163-166Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, 71Brès V. Yoh S.M. Jones K.A. Curr. Opin. Cell Biol. 2008; 20: 334-340Crossref PubMed Scopus (168) Google Scholar, 72Fujita T. Piuz I. Schlegel W. FEBS Lett. 2009; 583: 2893-2898Crossref PubMed Scopus (16) Google Scholar).To address these questions, the role of TFBS controlling the TAP1/LMP2, TAP2, and tapasin promoter activity was determined using TFBS KO mutants generated by site-directed mutagenesis (62Herrmann F. Trowsdale J. Huber C. Seliger B. Immunogenetics. 2003; 55: 379-388Crossref PubMed Scopus (17) Google Scholar). Mutations of the E2F and p300 TFBS caused a reconstitution of the tapasin promoter activity in HER-2/neu+ cells, suggesting the involvement of E2F1 and p300 in the transcriptional down-regulation of tapasin in oncogenic transformants. In contrast, E2F is not crucial for the HER-2/neu-mediated down-regulation of TAP1 transcription, whereas the E2F-binding site at position −85 plays an important role for TAP2 transcription. These data were further validated by investigating the access of RNA pol II complexes to the APM promoters using ChIP. The decreased binding of RNA pol II to the APM promoters in HER-2/neu+ cells mirrored the decreased transcription level of tapasin, TAP1, LMP2, and TAP2 in these cells. These results are in accordance with a recent report by Jefferies and co-workers (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar) demonstrating an association of a weak TAP1 promoter activity with reduced recruitment of CBP to the TAP1 promoter in TAP1-deficient cells.To clarify the role of the histone-acetylating protein p300, a slightly reduced attachment of p300 to tapasin and LMP2 but not to the TAP2 promoter in HER-2/neu+ cells when compared with untransformed cells was found, suggesting a correlation between RNA pol II and p300 access to these promoters. Because the binding of E2F1–3 to promoters is associated with the acquisition of the histone H3 and H4 acetylation (73Takahashi Y. Rayman J.B. Dynlacht B.D. Genes Dev. 2000; 14: 804-816PubMed Google Scholar, 74Taubert S. Gorrini C. Frank S.R. Parisi T. Fuchs M. Chan H.M. Livingston D.M. Amati B. Mol. Cell Biol. 2004; 24: 4546-4556Crossref PubMed Scopus (166) Google Scholar), E2F1 ChIP assays were performed to clarify the role of E2F1 in APM component transcription.Indeed, E2F1 was able to bind to the WT tapasin, TAP1, and TAP2 promoters. The amplicons obtained match perfectly the amplicon pattern from ChIP analyses of RNA pol II and p300, suggesting a coordinated transcription initiation complex engulfing RNA pol II, p300, and E2F1. Recently, the specificity of E2F activation and repression has been investigated for the Cdc2 and Cdc6 genes, demonstrating both positive and negative effects on the transcription for both proximal and distal E2F-binding sites depending on the E2F transcription factor (75Freedman J.A. Chang J.T. Jakoi L. Nevins J.R. Oncogene. 2009; 28: 2873-2881Crossref PubMed Scopus (25) Google Scholar, 76Schlisio S. Halperin T. Vidal M. Nevins J.R. EMBO J. 2002; 21: 5775-5786Crossref PubMed Scopus (173) Google Scholar, 77Zhu W. Giangrande P.H. Nevins J.R. EMBO J. 2004; 23: 4615-4626Crossref PubMed Scopus (269) Google Scholar).In an attempt to explore the function of E2F1 regarding the regulation of tapasin expression, E2F1 was either inhibited by E2F1-specific siRNA or overexpressed. Although E2F1 silencing was directly accompanied by an increased tapasin transcription and translation in HER-2/neu− cells, the transient E2F1 overexpression resulted in a reduced tapasin transcription. Moreover, differently sized DNA-binding proteins in crude nuclear extracts of WT and oncogene-transformed cells were found at the proximal E2F(−146)-binding site of the tapasin promoter in EMSA, which were completely abolished by unlabeled competitor. However, two or more proteins with distinct molecular weights might bind to this region, which might be explained by the broad homologies in the DNA binding capacity of the different members of E2F transcription factor family (78Dimova D.K. Dyson N.J. Oncogene. 2005; 24: 2810-2826Crossref PubMed Scopus (584) Google Scholar, 79Rabinovich A. Jin V.X. Rabinovich R. Xu X. Farnham P.J. Genome Res. 2008; 18: 1763-1777Crossref PubMed Scopus (106) Google Scholar, 80Adams P.D. Kaelin Jr., W.G. Semin. Cancer Biol. 1995; 6: 99-108Crossref PubMed Scopus (138) Google Scholar, 81Bandara L.R. Buck V.M. Zamanian M. Johnston L.H. La Thangue N.B. EMBO J. 1993; 12: 4317-4324Crossref PubMed Scopus (218) Google Scholar, 82Helin K. Wu C.L. Fattaey A.R. Lees J.A. Dynlacht B.D. Ngwu C. Harlow E. Genes Dev. 1993; 7: 1850-1861Crossref PubMed Scopus (416) Google Scholar, 83Krek W. Livingston D.M. Shirodkar S. Science. 1993; 262: 1557-1560Crossref PubMed Scopus (219) Google Scholar). Because different E2F family members have been shown to bind with a distinct specificity to similar target genes (76Schlisio S. Halperin T. Vidal M. Nevins J.R. EMBO J. 2002; 21: 5775-5786Crossref PubMed Scopus (173) Google Scholar, 84Giangrande P.H. Hallstrom T.C. Tunyaplin C. Calame K. Nevins J.R. Mol. Cell Biol. 2003; 23: 3707-3720Crossref PubMed Scopus (90) Google Scholar, 85Wells J. Graveel C.R. Bartley S.M. Madore S.J. Farnham P.J. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 3890-3895Crossref PubMed Scopus (124) Google Scholar), we performed Southwestern blots to verify our EMSA results. A signal with an estimated size of 38 kDa was detected, which was more pronounced in crude nuclear extracts of HER-2/neu− cells.Using different experimental approaches, we here demonstrate for the first time a selective transcriptional control of tapasin expression in both untransformed and HER-2/neu-transformed cells. In this model system, E2F1 and p300 are in particular involved in the control of tapasin transcription, but the role of these transcription factors and their recruitment to promoters involved in modulation of the immunogenicity of tumor cells await further investigations (86Nevins J.R. Nature. 1992; 358: 375-376Crossref PubMed Scopus (80) Google Scholar, 87Blais A. Dynlacht B.D. Curr. Opin. Cell Biol. 2007; 19: 658-662Crossref PubMed Scopus (114) Google Scholar, 88Ogawa H. Ishiguro K. Gaubatz S. Livingston D.M. Nakatani Y. Science. 2002; 296: 1132-1136Crossref PubMed Scopus (622) Google Scholar, 89Pupa S.M. Howard C.M. Invernizzi A.M. De Vecchi R. Giani C. Claudio P.P. Colnaghi M.I. Giordano A. Ménard S. Oncogene. 1999; 18: 651-656Crossref PubMed Scopus (21) Google Scholar). IntroductionThe expression of multiple components of the antigen-processing machinery (APM) 2The abbreviations used are: APMantigen-processing machineryβ2-mβ2-microglobulinHCMHC class I heavy chainLMPlow molecular weight proteinlucluciferasemutmutantRNA pol IIRNA polymerase IITAPtransporter associated with antigen processingTFtranscription factorTFBStranscription factor-binding siteCREBcAMP-response element-binding proteinCBPCREB-binding proteinIRFinterferon regulatory transcription factorqRT-PCRquantitative RT-PCRmutmutant. is a prerequisite for constitutive MHC class I surface expression and necessary for recognition of non-self antigens by CD8+ cytotoxic T lymphocytes (1Garbi N. Tanaka S. van den Broek M. Momburg F. Hämmerling G.J. Immunol. Rev. 2005; 207: 77-88Crossref PubMed Scopus (33) Google Scholar, 2Jensen P.E. Nat. Immunol. 2007; 8: 1041-1048Crossref PubMed Scopus (250) Google Scholar, 3Raghavan M. Del Cid N. Rizvi S.M. Peters L.R. Trends Immunol. 2008; 29: 436-443Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar). Abnormalities in the MHC class I surface expression have been described in tumors of distinct origin that allow their escape from immune cell recognition (4Aptsiauri N. Carretero R. Garcia-Lora A. Real L.M. Cabrera T. Garrido F. Cancer Immunol. Immunother. 2008; 57: 1727-1733Crossref PubMed Scopus (49) Google Scholar, 5Rescigno M. Avogadri F. Curigliano G. Biochim Biophys. Acta. 2007; 1776: 108-123PubMed Google Scholar, 6Restifo N.P. Esquivel F. Kawakami Y. Yewdell J.W. Mulé J.J. Rosenberg S.A. Bennink J.R. J. Exp. Med. 1993; 177: 265-272Crossref PubMed Scopus (580) Google Scholar, 7Seliger B. Cancer Immunol. Immunother. 2008; 57: 1719-1726Crossref PubMed Scopus (125) Google Scholar, 8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar). These defects often result in decreased immunogenicity of tumors, disease progression, and reduced survival of patients (9Garrido C. Algarra I. Maleno I. Stefanski J. Collado A. Garrido F. Garcia-Lora A.M. Cancer Immunol. Immunother. 2010; 59: 13-26Crossref PubMed Scopus (23) Google Scholar, 10Lou Y. Vitalis T.Z. Basha G. Cai B. Chen S.S. Choi K.B. Jeffries A.P. Elliott W.M. Atkins D. Seliger B. Jefferies W.A. Cancer Res. 2005; 65: 7926-7933Crossref PubMed Scopus (64) Google Scholar). Recently, the molecular mechanisms underlying altered MHC class I surface expression have been attributed to impaired expression of the low molecular weight proteins (LMP)-2, -7, and -10, the proteasome activator (PA)28, the transporter associated with antigen processing (TAP) 1 and 2, β2-microglobulin (β2-m), and the MHC class I heavy chain (HC).Despite the identification of structural alterations in β2-m, HC, and TAP, which are caused by deletions, mutations, loss of heterozygosity, and/or recombinations, their occurrence is rare (11Cabrera C.M. Jiménez P. Cabrera T. Esparza C. Ruiz-Cabello F. Garrido F. Tissue Antigens. 2003; 61: 211-219Crossref PubMed Scopus (130) Google Scholar, 12Chang C.C. Ogino T. Mullins D.W. Oliver J.L. Yamshchikov G.V. Bandoh N. Slingluff Jr., C.L. Ferrone S. J. Biol. Chem. 2006; 281: 18763-18773Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar, 13Ferrone S. Marincola F.M. Immunol. Today. 1995; 16: 487-494Abstract Full Text PDF PubMed Scopus (455) Google Scholar, 14Maleno I. López-Nevot M.A. Cabrera T. Salinero J. Garrido F. Cancer Immunol. Immunother. 2002; 51: 389-396Crossref PubMed Scopus (82) Google Scholar). Because in most cases MHC class I APM defects could be restored by treatment with proinflammatory and inflammatory cytokines such as tumor necrosis factor (TNF)-α and type I and type II interferons (IFN), their impaired expression appears to be mainly due to deregulation rather than sequence abnormalities (15Epperson D.E. Arnold D. Spies T. Cresswell P. Pober J.S. Johnson D.R. J. Immunol. 1992; 149: 3297-3301PubMed Google Scholar, 16Seliger B. Schreiber K. Delp K. Meissner M. Hammers S. Reichert T. Pawlischko K. Tampé R. Huber C. Tissue Antigens. 2001; 57: 39-45Crossref PubMed Scopus (48) Google Scholar). Epigenetic, transcriptional, and/or posttranscriptional control of several APM components has been described in malignant cells (7Seliger B. Cancer Immunol. Immunother. 2008; 57: 1719-1726Crossref PubMed Scopus (125) Google Scholar). In particular mRNA and/or protein of major APM components, such as TAP1, TAP2, LMP2, LMP7, tapasin, β2-m, and/or HC, was often simultaneously suppressed upon malignant or viral transformation (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar, 18Bennett E.M. Bennink J.R. Yewdell J.W. Brodsky F.M. J. Immunol. 1999; 162: 5049-5052PubMed Google Scholar, 19Delp K. Momburg F. Hilmes C. Huber C. Seliger B. Bone Marrow Transplant. 2000; 25: S88-S95Crossref PubMed Scopus (65) Google Scholar, 20Griffioen M. Steegenga W.T. Ouwerkerk I.J. Peltenburg L.T. Jochemsen A.G. Schrier P.I. Mol. Immunol. 1998; 35: 829-835Crossref PubMed Scopus (16) Google Scholar, 21Hansen T.H. Bouvier M. Nat. Rev. Immunol. 2009; 9: 503-513Crossref PubMed Scopus (270) Google Scholar, 22Rotem-Yehudar R. Groettrup M. Soza A. Kloetzel P.M. Ehrlich R. J. Exp. Med. 1996; 183: 499-514Crossref PubMed Scopus (85) Google Scholar, 23Seliger B. Maeurer M.J. Ferrone S. Immunol. Today. 1997; 18: 292-299Abstract Full Text PDF PubMed Google Scholar, 24Seliger B. Maeurer M.J. Ferrone S. Immunol. Today. 2000; 21: 455-464Abstract Full Text Full Text PDF PubMed Scopus (373) Google Scholar, 25Smahel M. Sobotková E. Bubeník J. Símová J. Zák R. Ludviková V. Hájková R. Kovarík J. Jelínek F. Povýsil C. Marinov J. Vonka V. Br. J. Cancer. 2001; 84: 374-380Crossref PubMed Scopus (37) Google Scholar, 26Vertegaal A.C. Kuiperij H.B. Houweling A. Verlaan M. van der Eb A.J. Zantema A. J. Biol. Chem. 2003; 278: 139-146Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar, 27Vertuani S. Triulzi C. Roos A.K. Charo J. Norell H. Lemonnier F. Pisa P. Seliger B. Kiessling R. Cancer Immunol. Immunother. 2009; 58: 653-664Crossref PubMed Scopus (45) Google Scholar). In addition, methylation and altered histone acetylation were found with a low frequency for β2-m, HC, and TAP1 in tumors and were associated with a decreased MHC class I surface expression (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar, 28Campoli M. Ferrone S. Oncogene. 2008; 27: 5869-5885Crossref PubMed Scopus (284) Google Scholar, 29Khan A.N. Gregorie C.J. Tomasi T.B. Cancer Immunol. Immunother. 2008; 57: 647-654Crossref PubMed Scopus (161) Google Scholar, 30Sers C. Kuner R. Falk C.S. Lund P. Sueltmann H. Braun M. Buness A. Ruschhaupt M. Conrad J. Mang-Fatehi S. Stelniec I. Krapfenbauer U. Poustka A. Schäfer R. Int. J. Cancer. 2009; 125: 1626-1639Crossref PubMed Scopus (64) Google Scholar, 31Setiadi A.F. Omilusik K. David M.D. Seipp R.P. Hartikainen J. Gopaul R. Choi K.B. Jefferies W.A. Cancer Res. 2008; 68: 9601-9607Crossref PubMed Scopus (134) Google Scholar, 32Ye Q. Shen Y. Wang X. Yang J. Miao F. Shen C. Zhang J. Tissue Antigens. 2009; 75: 30-39Crossref PubMed Scopus (41) Google Scholar).So far, detailed information about the control of tapasin expression in murine and human tumor cells is scarce. Tapasin expression has been demonstrated to be down-regulated in breast cancer (16Seliger B. Schreiber K. Delp K. Meissner M. Hammers S. Reichert T. Pawlischko K. Tampé R. Huber C. Tissue Antigens. 2001; 57: 39-45Crossref PubMed Scopus (48) Google Scholar), melanoma (33Dissemond J. Kothen T. Mörs J. Weimann T.K. Lindeke A. Goos M. Wagner S.N. Arch. Dermatol. Res. 2003; 295: 43-49Crossref PubMed Scopus (32) Google Scholar, 34Seliger B. Ritz U. Abele R. Bock M. Tampé R. Sutter G. Drexler I. Huber C. Ferrone S. Cancer Res. 2001; 61: 8647-8650PubMed Google Scholar), colorectal carcinoma (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar, 19Delp K. Momburg F. Hilmes C. Huber C. Seliger B. Bone Marrow Transplant. 2000; 25: S88-S95Crossref PubMed Scopus (65) Google Scholar, 35Cabrera C.M. López-Nevot M.A. Jiménez P. Garrido F. Int. J. Cancer. 2005; 113: 611-618Crossref PubMed Scopus (14) Google Scholar), cervical cancer (36Mehta A.M. Jordanova E.S. Corver W.E. van Wezel T. Uh H.W. Kenter G.G. Jan Fleuren G. Genes Chromosomes Cancer. 2009; 48: 410-418Crossref PubMed Scopus (70) Google Scholar), small cell and non-small cell lung carcinoma (10Lou Y. Vitalis T.Z. Basha G. Cai B. Chen S.S. Choi K.B. Jeffries A.P. Elliott W.M. Atkins D. Seliger B. Jefferies W.A. Cancer Res. 2005; 65: 7926-7933Crossref PubMed Scopus (64) Google Scholar), fibrosarcoma (37Garcia-Lora A. Martinez M. Algarra I. Gaforio J.J. Garrido F. Int. J. Cancer. 2003; 106: 521-527Crossref PubMed Scopus (71) Google Scholar), as well as bladder cancer (38Romero J.M. Jiménez P. Cabrera T. Cózar J.M. Pedrinaci S. Tallada M. Garrido F. Ruiz-Cabello F. Int. J. Cancer. 2005; 113: 605-610Crossref PubMed Scopus (108) Google Scholar). In human colorectal cancers, tapasin expression is even more strongly affected and more frequently lost than TAP1, LMP2, and LMP7 (17Atkins D. Breuckmann A. Schmahl G.E. Binner P. Ferrone S. Krummenauer F. Störkel S. Seliger B. Int. J. Cancer. 2004; 109: 265-273Crossref PubMed Scopus (99) Google Scholar). Thus, tapasin expression might represent a key event in overcoming immune surveillance in these tumors (35Cabrera C.M. López-Nevot M.A. Jiménez P. Garrido F. Int. J. Cancer. 2005; 113: 611-618Crossref PubMed Scopus (14) Google Scholar).Tapasin harbors a central role in the assembly of the peptide-loading complex by stabilizing TAP expression, determining peptide selection, and maintaining an appropriate MHC class I redox status. Although several components of the peptide-loading complex are required for optimal assembly and transport of MHC class I molecules to the surface, TAP and tapasin are essential for an optimized peptide loading to empty MHC class I molecules and their successive presentation to cytotoxic CD8+ T lymphocytes (39Garbi N. Tan P. Diehl A.D. Chambers B.J. Ljunggren H.G. Momburg F. Hämmerling G.J. Nat. Immunol. 2000; 1: 234-238Crossref PubMed Scopus (165) Google Scholar). Studies on the transcriptional regulation mainly focused on HC, β2-m, TAP1, and LMP2 (40Agrawal S. Kishore M.C. J. Hematother Stem. Cell Res. 2000; 9: 795-812Crossref PubMed Scopus (39) Google Scholar, 41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar, 42Wright K.L. White L.C. Kelly A. Beck S. Trowsdale J. Ting J.P. J. Exp. Med. 1995; 181: 1459-1471Crossref PubMed Scopus (203) Google Scholar) and identified different common transcription factors, which are involved in constitutive and IFN-γ induced protein expression. These include (i) CREB for constitutive expression and the IFN-sensitive response element for an IFN-γ-induced expression of the HC (40Agrawal S. Kishore M.C. J. Hematother Stem. Cell Res. 2000; 9: 795-812Crossref PubMed Scopus (39) Google Scholar, 43Gobin S.J. van Zutphen M. Woltman A.M. van den Elsen P.J. J. Immunol. 1999; 163: 1428-1434PubMed Google Scholar, 44Gobin S.J. Wilson L. Keijsers V. Van den Elsen P.J. J. Immunol. 1997; 158: 3587-3592PubMed Google Scholar, 45van den Elsen P.J. Holling T.M. Kuipers H.F. van der Stoep N. Curr. Opin. Immunol. 2004; 16: 67-75Crossref PubMed Scopus (138) Google Scholar, 46van den Elsen P.J. Peijnenburg A. van Eggermond M.C. Gobin S.J. Immunol. Today. 1998; 19: 308-312Abstract Full Text Full Text PDF PubMed Scopus (95) Google Scholar) and the bidirectional TAP1/LMP2 promoter (8Setiadi A.F. David M.D. Seipp R.P. Hartikainen J.A. Gopaul R. Jefferies W.A. Mol. Cell Biol. 2007; 27: 7886-7894Crossref PubMed Scopus (53) Google Scholar, 41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar) and (ii) the cooperating transcription factors IRF2 and STAT1 for constitutive expression as well as IRF1 and STAT1 for the IFN-γ-mediated enhanced TAP1/LMP2 expression (41Min W. Pober J.S. Johnson D.R. J. Immunol. 1996; 156: 3174-3183PubMed Google Scholar, 42Wright K.L. White L.C. Kelly A. Beck S. Trowsdale J. Ting J.P. J. Exp. Med. 1995; 181: 1459-1471Crossref PubMed Scopus (203) Google Scholar, 47Brucet M. Marqués L. Sebastián C. Lloberas J. Celada A. Genes Immun. 2004; 5: 26-35Crossref PubMed Scopus (52) Google Scholar, 48Chatterjee-Kishore M. Kishore R. Hicklin D.J. Marincola F.M. Ferrone S. J. Biol. Chem. 1998; 273: 16177-16183Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar, 49Dovhey S.E. Ghosh N.S. Wright K.L. Cancer Res. 2000; 60: 5789-5796PubMed Google Scholar, 50Kishi F. Suminami Y. Monaco J.J. Gene. 1993; 133: 243-248Crossref PubMed Scopus (3) Google Scholar, 51Rouyez M.C. Lestingi M. Charon M. Fichelson S. Buzyn A. Dusanter-Fourt I. J. Immunol. 2005; 174: 3948-3958Crossref PubMed Scopus (41) Google Scholar). A similar regulation pattern was observed for murine TAP2, which is controlled by CREB and IRF for constitutive and/or IFN-γ-controlled activity (52Arons E. Kunin V. Schechter C. Ehrlich R. J. Immunol. 2001; 166: 3942-3951Crossref PubMed Scopus (19) Google Scholar, 53Guo Y. Yang T. Liu X. Lu S. Wen J. Durbin J.E. Liu Y. Zheng P. Int. Immunol. 2002; 14: 189-200Crossref PubMed Scopus (11) Google Scholar).Both the human and the murine tapasin promoters contain one IFN-sensitive response element and two IFNγ-activated sequence motif consensus sequences in the 5′-UTR of the gene (54Abarca-Heidemann K. Friederichs S. Klamp T. Boehm U. Guethlein L.A. Ortmann B. Immunol. Lett. 2002; 83: 197-207Crossref PubMed Scopus (26) Google Scholar, 55Herberg J.A. Sgouros J. Jones T. Copeman J. Humphray S.J. Sheer D. Cresswell P. Beck S. Trowsdale J. Eur. J. Immunol. 1998; 28: 459-467Crossref PubMed Scopus (66) Google Scholar). A study by Herrmann et al. (62Herrmann F. Trowsdale J. Huber C. Seliger B. Immunogenetics. 2003; 55: 379-388Crossref PubMed Scopus (17) Google Scholar) identified NF-κB as a basal transcription factor and a shared IRF1/2-binding site mediating IFN-γ inducibility of tapasin expression in murine cells. Recently, a cytokine-independent up-regulation of APM components by the CD40L-mediated transactivation of TAP1, TAP2, tapasin, LMP2, and LMP10 genes via NF-κB was observed, resulting in a de novo IRF1 synthesis accompanied by activating IRF1 in a STAT1-independent manner (56Moschonas A. Kouraki M. Knox P.G. Thymiakou E. Kardassis D. Eliopoulos A.G. Mol. Cell Biol. 2008; 28: 6208-6222Crossref PubMed Scopus (27) Google Scholar).Despite the transcriptional and posttranscriptional down-regulation of APM components in tumor cells, detailed information about the molecular mechanisms or factors involved in this process is limited or controversially discussed (11Cabrera C.M. Jiménez P. Cabrera T. Esparza C. Ruiz-Cabello F. Garrido F. Tissue Antigens. 2003; 61: 211-219Crossref PubMed Scopus (130) Google Scholar, 38Romero J.M. Jiménez P. Cabrera T. Cózar J.M. Pedrinaci S. Tallada M. Garrido F. Ruiz-Cabello F. Int. J. Cancer. 2005; 113: 605-610Crossref PubMed Scopus (108) Google Scholar, 57Facoetti A. Nano R. Zelini P. Morbini P. Benericetti E. Ceroni M. Campoli M. Ferrone S. Clin. Cancer Res. 2005; 11: 8304-8311Crossref PubMed Scopus (153) Google Scholar, 58Raffaghello L. Prigione I. Bocca P. Morandi F. Camoriano M. Gambini C. Wang X. Ferrone S. Pistoia V. Oncogene. 2005; 24: 4634-4644Crossref PubMed Scopus (80) Google Scholar). In addition, there exists little information about transcription factors modulating the MHC class I APM component expression. Although promyelocytic leukemia protein has been suggested as a general regulator of APM component expression, its role in controlling this pathway is controversially discussed (59Bruno S. Ghiotto F. Fais F. Fagioli M. Luzi L. Pelicci P.G. Grossi C.E. Ciccone E. Blood. 2003; 101: 3514-3519Crossref PubMed Scopus (29) Google Scholar, 60Zheng P. Guo Y. Niu Q. Levy D.E. Dyck J.A. Lu S. Sheiman L.A. Liu Y. Nature. 1998; 396: 373-376Crossref PubMed Scopus (142) Google Scholar). In contrast, the antagonistic transcription factor B lymphocyte-induced maturation protein-1 (PR domain-containing 1 (PRDM1)) has recently been shown to repress the IFN-γ-dependent transcription of ERAP1, tapasin, MECL1, and LMP7, resulting in a failure to up-regulate MHC class I surface antigens in human cell lines (61Doody G.M. Stephenson S. McManamy C. Tooze R.M. J. Immunol. 2007; 179: 7614-7623Crossref PubMed Scopus (34) Google Scholar). Therefore, the aim of this study was to identify factors involved in the HER-2/neu-mediated down-regulation of MHC class I APM components using an in vitro model of oncogenic transformation. We here show for the first time an important role for E2F1 in the transcriptional regulation of tapasin in untransformed and HER-2/neu-transformed fibroblasts.

Referência(s)