Artigo Revisado por pares

Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure

2014; Wiley; Volume: 29; Issue: 3 Linguagem: Inglês

10.1096/fj.14-255646

ISSN

1530-6860

Autores

San Hadži, Andrej Ondračka, Roman Jerala, Iva Hafner‐Bratkovič,

Tópico(s)

Enzyme Structure and Function

Resumo

The FASEB JournalVolume 29, Issue 3 p. 882-893 Research CommunicationFree to Read Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure San Hadži, San Hadži Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia Current affiliation: Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium. Current affiliation: Department of Physical Chemistry, Faculty for Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.Search for more papers by this authorAndrej Ondračka, Andrej Ondračka Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia Current affiliation: The Rockefeller University, New York, New York, USA.Search for more papers by this authorRoman Jerala, Roman Jerala Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia EN-FIST Centre of Excellence, Ljubljana, SloveniaSearch for more papers by this authorIva Hafner-Bratkovič, Corresponding Author Iva Hafner-Bratkovič [email protected] Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia EN-FIST Centre of Excellence, Ljubljana, SloveniaCorrespondence: Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia. E-mail: [email protected]Search for more papers by this author San Hadži, San Hadži Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia Current affiliation: Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium. Current affiliation: Department of Physical Chemistry, Faculty for Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.Search for more papers by this authorAndrej Ondračka, Andrej Ondračka Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia Current affiliation: The Rockefeller University, New York, New York, USA.Search for more papers by this authorRoman Jerala, Roman Jerala Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia EN-FIST Centre of Excellence, Ljubljana, SloveniaSearch for more papers by this authorIva Hafner-Bratkovič, Corresponding Author Iva Hafner-Bratkovič [email protected] Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia EN-FIST Centre of Excellence, Ljubljana, SloveniaCorrespondence: Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia. E-mail: [email protected]Search for more papers by this author First published: 21 November 2014 https://doi.org/10.1096/fj.14-255646Citations: 13 Current affiliation: Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium. Current affiliation: Department of Physical Chemistry, Faculty for Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia. This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The mechanism of prion protein (PrP) conversion, the key event in prion diseases, is still not understood. We investigated how perturbations of interactions between the subdomains β1-α1-β2 and α2-α3 affect PrP conversion. In vitro fibrillization and biophysical methods were used to relate mouse PrP conversion kinetics to thermodynamic stability. We show that pathologic mutations H187R and E196K destabilize PrP (by 3.2 and 1.1 kJ/mol, respectively, at pH 7) and accelerate fibrillization. At acidic pH, the major contribution to the destabilization of PrP comes from the protonation of histidine 187 because its replacement by tyrosine led to more stable protein (by 4.2 kJ/mol at pH 4) with slower fibrillization. Furthermore, we show that the introduction of a novel histidine residue into the subdomain interface (F198H) acts as a pH-inducible switch that promotes conversion upon histidine protonation, whereas this effect is not observed when His residue is introduced at the protein surface (Y155H). We observed a strong correlation between the stability of native structure and kinetics of fibrillization of PrP variants. Our results show that pathologic mutations promote subdomain separation and suggest that stabilization of the native structure might be a viable strategy for the development of novel therapeutics for prion diseases.—Hadži, S., Ondračka, A., Jerala, R., and Hafner-Bratkovič, I., Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure. FASEB J. 29, 882–893 (2015). www.fasebj.org REFERENCES 1Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333– 366 2Aguzzi, A., and Polymenidou, M. (2004) Mammalian prion biology: one century of evolving concepts. Cell 116, 313– 327 3Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363– 13383 4Zahn, R., Liu, A., Lührs, T., Riek, R., von Schroetter, C., López García, F., Billeter, M., Calzolai, L., Wider, G., and Wüthrich, K (2000) NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 145– 150 5Glockshuber, R., Hornemann, S., Riek, R., Wider, G., Billeter, M., and Wüthrich, K. (1997) Three-dimensional NMR structure of a self-folding domain of the prion protein PrP(121-231). Trends Biochem. Sci. 22, 241– 242 6Hafner-Bratkovič, I., Gaedtke, L., Ondracka, A., Veranič, P., Vorberg, I., and Jerala, R. (2011) Effect of hydrophobic mutations in the H2-H3 subdomain of prion protein on stability and conversion in vitro and in vivo. PLoS One 6, e24238 7Van der Kamp, M. W., and Daggett, V. (2010) Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding. J. Mol. Biol. 404, 732– 748 8Hafner-Bratkovic, I., Bester, R., Pristovsek, P., Gaedtke, L., Veranic, P., Gaspersic, J., Mancek-Keber, M., Avbelj, M., Polymenidou, M., Julius, C., Aguzzi, A., Vorberg, I., and Jerala, R. (2011) Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J. Biol. Chem. 286, 12149– 12156 9Eghiaian, F., Daubenfeld, T., Quenet, Y., van Audenhaege, M., Bouin, A. P., van der Rest, G., Grosclaude, J., and Rezaei, H. (2007) Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage. Proc. Natl. Acad. Sci. USA 104, 7414– 7419 10Kuwata, K., Nishida, N., Matsumoto, T., Kamatari, Y. O., Hosokawa-Muto, J., Kodama, K., Nakamura, H. K., Kimura, K., Kawasaki, M., Takakura, Y., Shirabe, S., Takata, J., Kataoka, Y., and Katamine, S. (2007) Hot spots in prion protein for pathogenic conversion. Proc. Natl. Acad. Sci. USA 104, 11921– 11926 11Beck, J. A., Poulter, M., Campbell, T. A., Adamson, G., Uphill, J. B., Guerreiro, R., Jackson, G. S., Stevens, J. C., Manji, H., Collinge, J., and Mead, S. (2010) PRNP allelic series from 19 years of prion protein gene sequencing at the MRC Prion Unit. Hum. Mutat. 31, E1551– E1563 12Giachin, G., Biljan, I., Ilc, G., Plavec, J., and Legname, G. (2013) Probing early misfolding events in prion protein mutants by NMR spectroscopy. Molecules 18, 9451– 9476 13Peoc'h, K., Manivet, P., Beaudry, P., Attane, F., Besson, G., Hannequin, D., Delasnerie-Lauprêtre, N., and Laplanche, J. L. (2000) Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum. Mutat. 15, 482 14Gerum, C., Schlepckow, K., and Schwalbe, H. (2010) The unfolded state of the murine prion protein and properties of single-point mutants related to human prion diseases. J. Mol. Biol. 401, 7– 12 15Bütefisch, C. M., Gambetti, P., Cervenakova, L., Park, K. Y., Hallett, M., and Goldfarb, L. G. (2000) Inherited prion encephalopathy associated with the novel PRNP H187R mutation: a clinical study. Neurology 55, 517– 522 16Colucci, M., Moleres, F. J., Xie, Z. L., Ray-Chaudhury, A., Gutti, S., Butefisch, C. M., Cervenakova, L., Wang, W., Goldfarb, L. G., Kong, Q., Ghetti, B., Chen, S. G., and Gambetti, P. (2006) Gerstmann-Sträussler-Scheinker: a new phenotype with 'curly' PrP deposits. J. Neuropathol. Exp. Neurol. 65, 642– 651 17Gu, Y., and Singh, N. (2004) Doxycycline and protein folding agents rescue the abnormal phenotype of familial CJD H187R in a cell model. Brain Res. Mol. Brain Res. 123, 37– 44 18Bae, S. H., Legname, G., Serban, A., Prusiner, S. B., Wright, P. E., and Dyson, H. J. (2009) Prion proteins with pathogenic and protective mutations show similar structure and dynamics. Biochemistry 48, 8120– 8128 19Hosszu, L. L., Tattum, M. H., Jones, S., Trevitt, C. R., Wells, M. A., Waltho, J. P., Collinge, J., Jackson, G. S., and Clarke, A. R. (2010) The H187R mutation of the human prion protein induces conversion of recombinant prion protein to the PrP(Sc)-like form. Biochemistry 49, 8729– 8738 20Hall, D. A., Leehey, M. A., Filley, C. M., Steinbart, E., Montine, T., Schellenberg, G. D., Bosque, P., Nixon, R., and Bird, T. (2005) PRNP H187R mutation associated with neuropsychiatric disorders in childhood and dementia. Neurology 64, 1304– 1306 21Calzolai, L., and Zahn, R. (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J. Biol. Chem. 278, 35592– 35596 22Magalhães, A. C., Silva, J. A., Lee, K. S., Martins, V. R., Prado, V. F., Ferguson, S. S., Gomez, M. V., Brentani, R. R., and Prado, M. A. (2002) Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J. Biol. Chem. 277, 33311– 33318 23Borchelt, D. R., Taraboulos, A., and Prusiner, S. B. (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J. Biol. Chem. 267, 16188– 16199 24Marijanovic, Z., Caputo, A., Campana, V., and Zurzolo, C. (2009) Identification of an intracellular site of prion conversion. PLoS Pathog. 5, e1000426 25Pimpinelli, F., Lehmann, S., and Maridonneau-Parini, I. (2005) The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines. Eur. J. Neurosci. 21, 2063– 2072 26Caughey, B., Raymond, G. J., Ernst, D., and Race, R. E. (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 65, 6597– 6603 27Zahn, R., von Schroetter, C., and Wüthrich, K. (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett. 417, 400– 404 28Hafner-Bratkovic, I., Gaspersic, J., Smid, L. M., Bresjanac, M., and Jerala, R. (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein—a new mechanism for the inhibition of PrP(Sc) accumulation. J. Neurochem. 104, 1553– 1564 29Avbelj, M., Hafner-Bratkovič, I., and Jerala, R. (2011) Introduction of glutamines into the B2-H2 loop promotes prion protein conversion. Biochem. Biophys. Res. Commun. 413, 521– 526 30Pace, C. N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8, 93– 98 31Becktel, W. J., and Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859– 1877 32Bocharova, O. V., Breydo, L., Parfenov, A. S., Salnikov, V. V., and Baskakov, I. V. (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J. Mol. Biol. 346, 645– 659 33Gaspersic, J., Hafner-Bratkovic, I., Stephan, M., Veranic, P., Bencina, M., Vorberg, I., and Jerala, R. (2010) Tetracysteine-tagged prion protein allows discrimination between the native and converted forms. FEBS J. 277, 2038– 2050 34Knowles, T. P., Shu, W., Devlin, G. L., Meehan, S., Auer, S., Dobson, C. M., and Welland, M. E. (2007) Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Natl. Acad. Sci. USA 104, 10016– 10021 35Hafner-Bratkovič, I., Benčina, M., Fitzgerald, K. A., Golenbock, D., and Jerala, R. (2012) NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell. Mol. Life Sci. 69, 4215– 4228 36Polymenidou, M., Moos, R., Scott, M., Sigurdson, C., Shi, Y. Z., Yajima, B., Hafner-Bratkovic, I., Jerala, R., Hornemann, S., Wuthrich, K., Bellon, A., Vey, M., Garen, G., James, M. N., Kav, N., and Aguzzi, A. (2008) The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS One 3, e3872 37Van der Kamp, M. W., and Daggett, V. (2010) Influence of pH on the human prion protein: insights into the early steps of misfolding. Biophys. J. 99, 2289– 2298 38Langella, E., Improta, R., and Barone, V. (2004) Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues. Biophys. J. 87, 3623– 3632 39Anderson, M., Bocharova, O. V., Makarava, N., Breydo, L., Salnikov, V. V., and Baskakov, I. V. (2006) Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J. Mol. Biol. 358, 580– 596 40Baral, P. K., Wieland, B., Swayampakula, M., Polymenidou, M., Rahman, M. H., Kav, N. N., Aguzzi, A., and James, M. N. (2012) Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1. Acta Crystallogr. D Biol. Crystallogr. 68, 1501– 1512 41Giaccone, G., Verga, L., Bugiani, O., Frangione, B., Serban, D., Prusiner, S. B., Farlow, M. R., Ghetti, B., and Tagliavini, F. (1992) Prion protein preamyloid and amyloid deposits in Gerstmann-Sträussler-Scheinker disease, Indiana kindred. Proc. Natl. Acad. Sci. USA 89, 9349– 9353 42Liemann, S., and Glockshuber, R. (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258– 3267 43Chiti, F., Taddei, N., Bucciantini, M., White, P., Ramponi, G., and Dobson, C. M. (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J. 19, 1441– 1449 44Buell, A. K., Dhulesia, A., Mossuto, M. F., Cremades, N., Kumita, J. R., Dumoulin, M., Welland, M. E., Knowles, T. P., Salvatella, X., and Dobson, C. M. (2011) Population of nonnative states of lysozyme variants drives amyloid fibril formation. J. Am. Chem. Soc. 133, 7737– 7743 45Buell, A. K., Dhulesia, A., White, D. A., Knowles, T. P., Dobson, C. M., and Welland, M. E. (2012) Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem. Int. Ed. Engl. 51, 5247– 5251 46Rezaei, H., Choiset, Y., Eghiaian, F., Treguer, E., Mentre, P., Debey, P., Grosclaude, J., and Haertle, T. (2002) Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. J. Mol. Biol. 322, 799– 814 47Fändrich, M. (2007) Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils. J. Mol. Biol. 365, 1266– 1270 48Bocharova, O. V., Breydo, L., Salnikov, V. V., Gill, A. C., and Baskakov, I. V. (2005) Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob Disease. Protein Sci. 14, 1222– 1232 49Apetri, A. C., Surewicz, K., and Surewicz, W. K. (2004) The effect of disease-associated mutations on the folding pathway of human prion protein. J. Biol. Chem. 279, 18008– 18014 50Hafner-Bratkovič, I., and Jerala, R. (2011) Disulfide mapping reveals the domain swapping as the crucial process of the structural conversion of prion protein. Prion 5, 56– 59 51Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wüthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature 382, 180– 182 52Poland, D., Vournakis, J. N., and Scheraga, H. A. (1966) Cooperative interactions in single-strand oligomers of adenylic acid. Biopolymers 4, 223– 235 53Lin, S. H., Konishi, Y., Denton, M. E., and Scheraga, H. A. (1984) Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41)-ribonuclease a. Biochemistry 23, 5504– 5512 54Pace, C. N., Grimsley, G. R., Thomson, J. A., and Barnett, B. J. (1988) Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J. Biol. Chem. 263, 11820– 11825 55Apetri, A. C., and Surewicz, W. K. (2002) Kinetic intermediate in the folding of human prion protein. J. Biol. Chem. 277, 44589– 44592 56Neudecker, P., Robustelli, P., Cavalli, A., Walsh, P., Lundström, P., Zarrine-Afsar, A., Sharpe, S., Vendruscolo, M., and Kay, L. E. (2012) Structure of an intermediate state in protein folding and aggregation. Science 336, 362– 366 57Dhulesia, A., Cremades, N., Kumita, J. R., Hsu, S. T., Mossuto, M. F., Dumoulin, M., Nietlispach, D., Akke, M., Salvatella, X., and Dobson, C. M. (2010) Local cooperativity in an amyloidogenic state of human lysozyme observed at atomic resolution. J. Am. Chem. Soc. 132, 15580– 15588 58Hammarström, P., Wiseman, R. L., Powers, E. T., and Kelly, J. W. (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713– 716 59Bulawa, C. E., Connelly, S., Devit, M., Wang, L., Weigel, C., Fleming, J. A., Packman, J., Powers, E. T., Wiseman, R. L., Foss, T. R., Wilson, I. A., Kelly, J. W., and Labaudinière, R. (2012) Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 109, 9629– 9634 60Kong, Q., Mills, J. L., Kundu, B., Li, X., Qing, L., Surewicz, K., Cali, I., Huang, S., Zheng, M., Swietnicki, W., Sonnichsen, F. D., Gambetti, P., and Surewicz, W. K. (2013) Thermodynamic stabilization of the folded domain of prion protein inhibits prion infection in vivo. Cell Rep. 4, 248– 254 61Vieira, T. C., Reynaldo, D. P., Gomes, M. P., Almeida, M. S., Cordeiro, Y., and Silva, J. L. (2011) Heparin binding by murine recombinant prion protein leads to transient aggregation and formation of RNA-resistant species. J. Am. Chem. Soc. 133, 334– 344 62Vieira, T. C., Cordeiro, Y., Caughey, B., and Silva, J. L. (2014) Heparin binding confers prion stability and impairs its aggregation. FASEB J. 28, 2667– 2676 Citing Literature Supporting Information Filename Description fsb2029003016-sup-0001.pdfPDF document, 271.4 KB Supplementary material fsb2029003016-sup-0002.pdfPDF document, 233.8 KB Supplementary material fsb2029003016-sup-0003.pdfPDF document, 187.3 KB Supplementary material fsb2029003016-sup-0004.pdfPDF document, 4.2 MB Supplementary material Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume29, Issue3March 2015Pages 882-893 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX