13C, 15N and 29Si nuclear magnetic resonance studies of some aminosilanes and aminodisilanes
1989; Pergamon Press; Volume: 45; Issue: 11 Linguagem: Inglês
10.1016/0584-8539(89)80188-6
ISSN1873-3824
AutoresBernd Wrackmeyer, Carin Stader, Hong Zhou,
Tópico(s)Organoboron and organosilicon chemistry
Resumo13C, 15N (at natural abundance) and 29Si NMR data (chemical shifts and coupling constants) are reported for aminosilanes R2R′SiNHR1 (1), bis(silyl)amines Me2R′SiNHSiMe3 (2), 1,2-bis(amino)-ethanes (3), bis(amino)silanes RR′Si(NHR1)2 (4), 1,2-bis(amino)tetramethyldisilanes (5) and 1,1,2,2-tetrakis(amino)dimethyldisilanes (6). The δ15N values depend more on the nature of the substituents R1(H, alkyl, aryl) at the nitrogen atom (in the same way as for other amines) than on different substituents at the silicon atom. A linear correlation between 1J(29Si15N) and 1J(29Si13C) is proposed for silanes in which the SiN unit is replaced by the SiCH unit. This correlation comprises all 1J(29Si15N) values for aminosilanes R4-nSi(N)n (n = 1–4) and—most likely—also for aminodisilanes, and it predicts 1J(29Si15N)>0 if the corresponding value |1J(29Si13C)|>25 Hz. For the first time a two-bond coupling across Si, 2J(29Si 15N) = 6.9 Hz, has been observed for 6a. In the case of 6b (R1 = sBu) all resonances for the diastereomers are resolved in the 15N and 29Si NMR spectra in contrast to the 1H and 13C NMR spectra.
Referência(s)