Artigo Acesso aberto Revisado por pares

Post-Glacial Colonization, Drift, Local Selection and Conservation Value of Populations: A Northern Perspective

2004; BioMed Central; Volume: 130; Issue: 3 Linguagem: Inglês

10.1111/j.1601-5223.1999.00229.x

ISSN

1601-5223

Autores

Pekka Pamilo, Outi Savolainen,

Tópico(s)

Ecology and Vegetation Dynamics Studies

Resumo

HereditasVolume 130, Issue 3 p. 229-238 Open Access Post–Glacial Colonization, Drift, Local Selection and Conservation Value of Populations: A Northern Perspective Pekka Pamilo, Corresponding Author Pekka Pamilo Department of Conservation Biology and Genetics, University of Uppsala, Sweden.Pekka Pamilo, Department of Conservation Biology and Genetics, University of Uppsala, Box 7003, SE-750 07 Uppsala, SwedenSearch for more papers by this authorOuti Savolainen, Outi Savolainen Department of Biology, University of Oulu, Finland.Search for more papers by this author Pekka Pamilo, Corresponding Author Pekka Pamilo Department of Conservation Biology and Genetics, University of Uppsala, Sweden.Pekka Pamilo, Department of Conservation Biology and Genetics, University of Uppsala, Box 7003, SE-750 07 Uppsala, SwedenSearch for more papers by this authorOuti Savolainen, Outi Savolainen Department of Biology, University of Oulu, Finland.Search for more papers by this author First published: 06 May 2004 https://doi.org/10.1111/j.1601-5223.1999.00229.xCitations: 22AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Many boreal species have wide geographical distribution, the populations are evolutionarily young, and the species diversity generally decreases with the latitude. Therefore the intraspecific genetic diversity gets a high relative value as an important component of biodiversity. We review here the observed patterns of genetic differentiation in boreal populations, mainly in northern Europe. The observed patterns of differentiation can result from different colonization histories, genetic drift associated to restricted dispersal, clonal reproduction and demographic fluctuation, and finally adaptation to the steep environmental gradients at northern latitudes. This means that the populations form both evolutionarily and demographically separate units, and this genetic differentiation should be taken into account in any conservation plans aiming to preserve existing biodiversity. We also evaluate the applicability of the concepts ESU (evolutionarily significant unit) and MU (management unit) in these situations. References Antonius K and Nybom H, (1994). DNA fingerprinting reveals significant amounts of genetic variation in a wild raspberry Rubus idaeus population. Mol. Ecol. 3: 177–180. 10.1111/j.1365-294X.1994.tb00119.x CASWeb of Science®Google Scholar Avise JC, (1994). Molecular markers, natural history and evolution. Chapman and Hall, London and New York . 10.1007/978-1-4615-2381-9 CASWeb of Science®Google Scholar Bäck S, Collins JC and Russell G, (1992). Effects of salinity on growth of Baltic and Atlantic Fucus vesiculosus. Br. Phycol. J. 27: 39–47. 10.1080/00071619200650061 Web of Science®Google Scholar Barton NH and Whitlock MC, (1996). The evolution of metapopulations. In: Metapopulation biology (eds. I Hanski and ME Gilpin), Academic Press, San Diego , p. 183–210. Web of Science®Google Scholar Bengtsson BO, Weibull P and Ghatnekar L, (1995). The loss of alleles by sampling: a study of the common outbreeding grass Festuca ovina over three geographic scales. Hereditas 122: 221–238. 10.1111/j.1601-5223.1995.00221.x CASGoogle Scholar Bierzychudek P, (1985). Patterns in plant parthenogenesis. Experientia 41: 1255–1264. 10.1007/BF01952068 Web of Science®Google Scholar Crozier RH, (1997). Preserving the information content of species: genetic diversity, phylogeny and conservation worth. Annu. Rev. Ecol. Syst. 28: 243–268. 10.1146/annurev.ecolsys.28.1.243 Web of Science®Google Scholar Cunningham AA and Daszak P, (1998). Extinction of a species of land snail due to infection with a microsporidian parasite. Cons. Biol. 12: 1139–1141. 10.1046/j.1523-1739.1998.97485.x Web of Science®Google Scholar Ellegren H, Hartman G, Johanson M and Anderson L, (1993). Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc. Natl. Acad. Sci. USA 90: 8350–8153. 10.1073/pnas.90.17.8150 CASWeb of Science®Google Scholar Ennos RA, (1994). Estimating relative rates of pollen and seed migration among plant populations. Heredity 72: 250–259. 10.1038/hdy.1994.35 Web of Science®Google Scholar Eriksson G, Anderson S, Eiche V, Ifver J and Persson A, (1980). Severity index and transfer effects on survival and volume production of Pinus sylvestris in northern Sweden. Stud. For. Suecica 156: 1–32. Google Scholar Ferris C, King RA, Väinölä R and Hewitt GM, (1998). Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80: 584–593. 10.1046/j.1365-2540.1998.00342.x PubMedWeb of Science®Google Scholar Fredga K and Narain Y, (1996). A hybrid zone between the Hällefors and Uppsala chromosome races of Sorex araneus in central Sweden. Hereditas 125: 137–145. 10.1111/j.1601-5223.1996.00137.x Web of Science®Google Scholar Frykman I and Bengtsson B–O, (1984). Genetic differentiation in Sorex 111. Electrophoretic analysis of a hybrid zone between two karyotypic races in Sorex araneus. Hereditas 100: 259–270. Web of Science®Google Scholar Gyllensten U, (1985). Temporal allele frequency changes in density fluctuating populations of willow grouse (Lagopus lagopus L.). Evolution 39: 115–121. 10.1111/j.1558-5646.1985.tb04084.x PubMedWeb of Science®Google Scholar Hammer MF, Karafet T, Rasanayagam A, Wood ET, Altheide TK, Jenkins T, Griffiths RC, Templeton AR and Zegura SL, (1998). Out of Africa and back again: nested cladistic analysis of Human Y chromosome variation. Mol. Biol. Evol. 15: 427–441. 10.1093/oxfordjournals.molbev.a025939 CASPubMedWeb of Science®Google Scholar Hamrick JL and Godt MJ, (1990). Allozyme diversity in plant species. In: Plant population genetics, breeding, and genetic resources (eds. AHD Brown, MT Clegg, AL Kahler and BS Weir), Sinauer, Sunderland , Mass., p. 43–63. Google Scholar Hanski I and Hammond P, (1995). Biodiversity in boreal forests. Trends Ecol. Evol. 10: 5–6. 10.1016/S0169-5347(00)88952-1 Web of Science®Google Scholar Harju A and Muona O, (1989). Background pollination in Pinus sylvestris seed orchards. Scand. J. For. Res. 4: 513–520. 10.1080/02827588909382584 Web of Science®Google Scholar Hedrick PW and Savolainen O, (1996). Molecular and adaptive variation: a perspective for endangered plants. In: Southwestern rare and endangered plants: Proceedings of the second conference. General technical report RM–GTR–283 (eds. J Machinski, HD Hammond and L Holter), Forest Service, Rocky Mountain Forestry and Range Experiment Station, Fort Collins, USA, p. 92–102 Web of Science®Google Scholar Hewitt GM, (1988). Hybrid zones–natural laboratories for evolutionary studies. Trends Ecol. Evol. 3: 158–167. 10.1016/0169-5347(88)90033-X CASPubMedWeb of Science®Google Scholar Hewitt GM, (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276. 10.1006/bijl.1996.0035 CASPubMedWeb of Science®Google Scholar Hoffman AA and Parsons PA, (1991). Evolutionary genetics nd environmental stress. Oxford University Press, Oxford . Google Scholar Hurme P, Repø T, Pääkkönen T and Savolainen O, (1997). Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris L.). Can. J. For. Res. 27: 716–723. 10.1139/x97-052 Web of Science®Google Scholar Jaarola M and Tegelström H? (1995). Colonization history of north European field voles (Microtus agrestis) revealed by mitochondrial DNA. Mol. Ecol. 4: 299–310. 10.1111/j.1365-294X.1995.tb00223.x PubMedWeb of Science®Google Scholar Jonsell B, Kustås K and Nordal I, (1996). Genetic variation in Arabis petraea, a disjunct species in northern Europe. Ecography 18: 321–332. 10.1111/j.1600-0587.1995.tb00135.x Web of Science®Google Scholar Joosten MHA, Cozijnsen TJ and de Wit PJGM, (1994). Host resistance to a fungal tomato pathogen lost by a single base–pair change in an avirulence gene. Nature 367: 384–386. 10.1038/367384a0 CASPubMedWeb of Science®Google Scholar Kareiva PM, Kingsolver JG and Huey RB (eds.), (1993). Biotic interactions and global change. Sinauer Assoc. Sunderland. Google Scholar Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D and Savolainen O, (1996). Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor. Appl. Genet. 93: 215–221. CASWeb of Science®Google Scholar Koljonen M, (1989). Electrophoretically detectable variation in natural and hatchery stocks of Atlantic salmon in Finland. Hereditas 110: 23–35. 10.1111/j.1601-5223.1989.tb00413.x PubMedWeb of Science®Google Scholar Koski V, (1970). A study of pollen dispersal as a mechanism of gene flow in conifers. Comm. Inst. For. Fenn. 75: 1–30. Google Scholar Koski V and Tallqvist R, (1978). Results on long time measurements of the quantity of flowering and seed crop of forest trees. Folia Forestalia 364: 1–60. Google Scholar Lagercrantz U and Ryman N, (1990). Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozyme variation. Evolution 44: 38–53. 10.1111/j.1558-5646.1990.tb04278.x PubMedWeb of Science®Google Scholar Lankinen P, (1975). unpublished licentiate thesis. Department of Genetics. University of Oulu. (in Finnish) Google Scholar Lankinen P, (1986). Geographical variation in circadian eclosion rhythm and photoperiodic diapause in Drosophila littoralis. J. Comp. Physiol. A 159: 123–142. 10.1007/BF00612503 Web of Science®Google Scholar Latta R, Linhart Y, Fleck D and Elliot M, (1998). Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52: 61–67. 10.1111/j.1558-5646.1998.tb05138.x PubMedWeb of Science®Google Scholar Lesica P and Allendorf FW, (1995). When are peripheral populations valuable for conservation? Cons. Biol. 9: 753–760. 10.1046/j.1523-1739.1995.09040753.x Web of Science®Google Scholar Lönn M, Leskinen E and Pamilo P, (1998). Genetic differentiation of Swedish populations of plants and animals: implications for conservation. Rapport 4848. Naturvårdsverket Förlag, Stockholm. (in Swedish with an English summary) Google Scholar Lönn M and Prentice HC, (1995). The structure of allozyme and leaf shape variation in isolated, range marging populations of the shrub Hippocrepis emerus (Leguminosae). Ecography 18: 276–285. 10.1111/j.1600-0587.1995.tb00130.x Web of Science®Google Scholar Lönn M, Prentice HC and Tegelstrom H, (1995). Genetic differentiation in Hippocrepis emerus (Leguminosae): allozyme and DNA fingerprint variation in disjunct Scandinavian populations. Mol. Ecol. 4: 39–48. 10.1111/j.1365-294X.1995.tb00190.x Web of Science®Google Scholar Lumme J, (1978). Phenology and photoperiodic diapause in northern populations of Drosophila. In: Evolution of insect migration and diapause (ed. H Dingle), Springer Verlag, New York , p. 145–170. 10.1007/978-1-4615-6941-1_7 Google Scholar Lynch M, (1984). Destabilizing hybridization, general–purpose genotypes and geographic parthenogenesis. Q. Rev. Biol. 59: 257–290. 10.1086/413902 Web of Science®Google Scholar Lynch M, (1996). A quantitative–genetic perspective on conservation issues. In: Conservation genetics. Case histories from nature (eds. JC Avise and JL Hamrick), Chapman and Hall, New York , p. 479–501. Web of Science®Google Scholar Mattila A, Pakkanen A, Vakkari P and Raisio J, (1994). Genetic variation in English oak, Quercus robur in Finland. Silva Fenn. 28: 251–256. 10.14214/sf.a9177 Google Scholar McCauley DE, Raveill J and Antonovics J, (1995). Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75: 630–636. 10.1038/hdy.1995.182 Web of Science®Google Scholar Merilä J, (1997). Quantitative trait and allozyme divergence in the greenfinch (Carduelis chloris, Aves: Fringillidae). Biol. J. Linn. Soc. 61: 243–266. 10.1111/j.1095-8312.1997.tb01789.x Web of Science®Google Scholar Merilä J, Björklund M and Baker AJ, (1997). Historical demography and present day population structure of the Greenfinch (Carduelis chloris)–an analysis of mtDNA control–region sequences. Evolution 51: 946–956. 10.1111/j.1558-5646.1997.tb03675.x PubMedWeb of Science®Google Scholar Mikko S and Andersson L, (1995). Low major histocompatibility complex class II diversity in European and North American moose. Proc. Natl. Acad. Sci. USA 92: 4259–4263. 10.1073/pnas.92.10.4259 CASPubMedWeb of Science®Google Scholar Mikkola K, (1991). The conservation of insects and their habitats in northern and eastern Europe. In: The conservation of insects and their habitats (eds. NM Collins and JA Thomas), Academic Press, London , p. 109–119. 10.1016/B978-0-12-181370-3.50011-7 Google Scholar Mikola J, (1982). Bud–set phenology as an indicator of climatic adaptation of Scots pine in Finland. Silva Fenn. 16: 178–184. Google Scholar Moritz C, (1994). Defining 'evolutionarily significant units' for conservation. Trends Ecol. Evol. 9: 373–375. 10.1016/0169-5347(94)90057-4 CASPubMedWeb of Science®Google Scholar Muona and Lumme J, (1981). Geographical variation in the reproductive cycle and photoperiodic diapause of Drosophila phalerata and D. transversa (Drosophilidae: Diptera). Evolution 35: 158–167. 10.1111/j.1558-5646.1981.tb04868.x PubMedWeb of Science®Google Scholar Pamilo P and Crozier RH, (1997). Population biology of social insect conservation. Mem. Mus. Victoria 56: 411–419. 10.24199/j.mmv.1997.56.32 Web of Science®Google Scholar Petit R, Pineau B, Demesure B, Bacilieri R, Ducousso A and Kremer A, (1997). Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl. Acad. Sci. USA 94: 9996–10001. 10.1073/pnas.94.18.9996 CASPubMedWeb of Science®Google Scholar Refseth UH, Nesbø CL, Stacy JE, Verllestad LA, Fjeld E and Jakobsen KS, (1998). Genetic evidence for different migration routes of freshwater fish into Norway revealed by analysis of current perch (Perca fluviatilis) populations in Scandinavia. Mol. Ecol. 7: 1015–1027. 10.1046/j.1365-294x.1998.00423.x CASPubMedWeb of Science®Google Scholar Russell G, (1994). A Baltic variant of Pilayella littoralis (Algae, Fueophyeeae). Ann. Dot. Fenn. 31. 127–138. Web of Science®Google Scholar Ryman N, Lagercrantz U, Andersson L, Chakraborty R and Rosenberg R, (1984). Lack of correspondence between genetic and morphological variability patterns in Atlantic herring (Clupea harengus). Heredity 53: 687–704. 10.1038/hdy.1984.127 Web of Science®Google Scholar Ryman N, Reuterwall C, Nygrén K and Nygrén T, (1980). Genetic variation and differentiation in Scandinavian moose (Alces alces): Are large mammals monomorphic? Evolution 34: 1037–1049. 10.1111/j.1558-5646.1980.tb04046.x PubMedWeb of Science®Google Scholar Ryman N and Ståhl G, (1981). Genetic perspectives of the identification and conservation of Scandinavian stocks of fish. Can. J. Fish. Aquat. Sci. 38: 1562–1575. 10.1139/f81-207 Web of Science®Google Scholar Sage RD and Wolff JO, (1986). Pleistocene glaciations, fluctuating ranges, and low genetic variability in a large mammal (Ovis dalli). Evolution 40: 1092–1095. 10.1111/j.1558-5646.1986.tb00576.x PubMedWeb of Science®Google Scholar Saura A, Lokki J, Lankinen P and Suomalainen E, (1976). Genetic polymorphism and evolution in parthenogenetic animals. 111. Tetraploid Otiorhyncus scaber (Coleoptera: Curculionidae). Hereditas 82: 79–100. 10.1111/j.1601-5223.1976.tb01542.x CASPubMedWeb of Science®Google Scholar Savolainen O, (1996). Pines beyond the polar circle: adaptation to stress conditions. Euphytica 92: 139–145. 10.1007/BF00022839 Web of Science®Google Scholar Taberlet P, Swenson JE, Sandegren F and Bjarvall A, (1995). Localization of a contact zone between two highly divergent mitochondrial DNA lineages of the brown bear Ursus arctos in Scandinavia. Cons. Biol. 9: 1255–1261. 10.1046/j.1523-1739.1995.951255.x Web of Science®Google Scholar Tegelström, H, (1987). Transfer of mitochondrial DNA from the northern red–backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J. Mol. Evol. 24: 218–227. 10.1007/BF02111235 PubMedWeb of Science®Google Scholar Turesson G, (1922). The genotypical response of the plant species to the habitats. Hereditas 3: 211–350. 10.1111/j.1601-5223.1922.tb02734.x Web of Science®Google Scholar Väinölä R and Hvilsom MM, (1991). Genetic divergence and a hybrid zone between Baltic and North Sea Mytilus populations (Mytilidae: Mollusca). Biol. J. Linn. Soc. 43: 127–148. 10.1111/j.1095-8312.1991.tb00589.x Web of Science®Google Scholar Väinölä R, Riddoch BJ, Ward RD and Jones RI, (1994). Genetic zoogeography of the Mysis relicta species group in northern Europe and North America. Can. J. Fish. Aquat. Sci. 51: 1490–1505. 10.1139/f94-149 Web of Science®Google Scholar Väinölä R and Varvio S-L, (1989). Biosystematics of Macoma balthica in northwestern Europe. In: Reproduction, genetics and distributions of marine organisms (eds. JS Ryland and PA Tyler), Olsen & Olsen, Fredensborg , Denmark , p. 309–316. Web of Science®Google Scholar van Treuren R, Kuittinen H, Kärkktäinen K, Baena-Gonzalez E and Savolainen O, (1997). Evolution of microsatellites in Arabis petraea and A. lyrata, outcrossing relatives of Arabidopsis thaliana. Mol. Biol. Evol. 14: 220–229. 10.1093/oxfordjournals.molbev.a025758 Google Scholar Varvio S-L, Chakraborty R and Nei M, (1986). Genetic variation in subdivided populations and conservation genetics. Heredity 57: 189–198. 10.1038/hdy.1986.109 PubMedWeb of Science®Google Scholar Varvio S-L, Koehn RK and Väinölä R, (1988). Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Mar. Biol. 98: 51–60. 10.1007/BF00392658 Web of Science®Google Scholar Varvio-Aho S-L, (1981). The effects of ecological differences on the amount of enzyme gene variation in Finnish waterstrider (Gerris) species. Hereditas 94: 35–39. 10.1111/j.1601-5223.1981.tb01728.x Google Scholar Wang JY and Berggren P, (1997). Mitochondrial DNA analysis of harbour porpoises (Phocoena phocoena) in the Baltic Sea, Kattegat–Skagerrak Seas and off the west coast of Norway. Mar. Biol. 127: 531–537. 10.1007/s002270050042 Web of Science®Google Scholar Westerbergh A and Saura A, (1992). The effects of serpentine on the population structure of Silene dioica (Caryophyllaceae). Evolution 46: 1537–1548. 10.1111/j.1558-5646.1992.tb01143.x CASPubMedWeb of Science®Google Scholar Wolfe KH, Li W-H and Sharp P, (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84: 9054–9058. 10.1073/pnas.84.24.9054 CASPubMedWeb of Science®Google Scholar Wyttenbach A, Narain Y and Fredga K, (1999). Genetic structuring and gene flow in a hybrid zone between two chromosome races of the common shrew (Sorex araneus, Insectivora) revealed by microsatellites. Heredity 82: 79–88. 10.1046/j.1365-2540.1999.00452.x Web of Science®Google Scholar Zanetto A and Kremer A, (1995). Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity 75: 506–517. 10.1038/hdy.1995.167 Web of Science®Google Scholar Citing Literature Volume130, Issue3August 1999Pages 229-238 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX