Aeration in Trees
1972; University of Chicago Press; Volume: 133; Issue: 4 Linguagem: Inglês
10.1086/336669
ISSN1940-1205
AutoresDonal D. Hook, Claud L. Brown, Ralph H. Wetmore,
Tópico(s)Peatlands and Wetlands Ecology
ResumoPrevious articleNext article Aeration in TreesDonal D. Hook, Claud L. Brown, and Ralph H. WetmoreDonal D. Hook, Claud L. Brown, and Ralph H. WetmorePDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by Volume 133, Number 4Dec., 1972 Article DOIhttps://doi.org/10.1086/336669 Views: 7Total views on this site Citations: 58Citations are reported from Crossref Journal History This article was published in the Botanical Gazette (1876-1991), which is continued by International Journal of Plant Sciences (1992-present). PDF download Crossref reports the following articles citing this article:Kristofer R. Covey, J. Patrick Megonigal Methane production and emissions in trees and forests, New Phytologist 222, no.11 (Jan 2019): 35–51.https://doi.org/10.1111/nph.15624Boaz Hilman, Alon Angert Discrimination in Tree Stems O 2 Uptake and the Dole Effect, Global Biogeochemical Cycles 17 (Aug 2018).https://doi.org/10.1029/2018GB005918Christiane Wittmann, Hardy Pfanz More than just CO 2 -recycling: corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen, New Phytologist 219, no.22 (May 2018): 551–564.https://doi.org/10.1111/nph.15198Mary Jane Carmichael, Joseph C. White, William K. Smith Water Source Utilization in Taxodium distichum (L.) Rich. (baldcypress) over the Course of a Growing Season in a Restored Coastal Freshwater Wetland Vulnerable to Saltwater Incursion, Castanea 83, no.22 (Oct 2018): 272–287.https://doi.org/10.2179/18-158Paulo R. L. Bittencourt, Luciano Pereira, Rafael S. Oliveira On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff, New Phytologist 211, no.44 (Jun 2016): 1152–1155.https://doi.org/10.1111/nph.14044Luciano Pereira, Paulo R. L. Bittencourt, Rafael S. Oliveira, Mauro B. M. Junior, Fernanda V. Barros, Rafael V. Ribeiro, Paulo Mazzafera Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics, New Phytologist 211, no.11 (Feb 2016): 357–370.https://doi.org/10.1111/nph.13905C. Kevin Boyce, William A. DiMichele Arborescent lycopsid productivity and lifespan: Constraining the possibilities, Review of Palaeobotany and Palynology 227 (Apr 2016): 97–110.https://doi.org/10.1016/j.revpalbo.2015.10.007H. Jochen Schenk, Susana Espino, Ate Visser, Bradley K. Esser Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry, Plant, Cell & Environment 39, no.44 (Feb 2016): 944–950.https://doi.org/10.1111/pce.12678Christiane Wittmann, Hardy Pfanz Bark and woody tissue photosynthesis: a means to avoid hypoxia or anoxia in developing stem tissues, Functional Plant Biology 41, no.99 (Jan 2014): 940.https://doi.org/10.1071/FP14046Rick G. Kelsey, Maia M. Beh, David C. Shaw, Daniel K. Manter Ethanol Attracts Scolytid Beetles to Phytophthora ramorum Cankers on Coast Live Oak, Journal of Chemical Ecology 39, no.44 (Mar 2013): 494–506.https://doi.org/10.1007/s10886-013-0271-6A. Angert, J. Muhr, R. Negron Juarez, W. Alegria Muñoz, G. Kraemer, J. Ramirez Santillan, E. Barkan, S. Mazeh, J. Q. Chambers, S. E. Trumbore Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux, Biogeosciences 9, no.1212 (Dec 2012): 4979–4991.https://doi.org/10.5194/bg-9-4979-2012A. Angert, J. Muhr, R. Negron Juarez, W. Alegria Muñoz, G. Kraemer, J. Ramirez Santillan, E. Barkan, S. Mazeh, J. Q. Chambers, S. E. Trumbore Internal respiration of Amazon tree stems greatly exceeds external CO2 efflux, Biogeosciences Discussions 9, no.88 (Aug 2012): 11443–11477.https://doi.org/10.5194/bgd-9-11443-2012Lance S. Evans, Alison Bromberg Characterization of cork warts and aerenchyma in leaves of Rhizophora mangle and Rhizophora racemosa, The Journal of the Torrey Botanical Society 137, no.11 (Jan 2010): 30–38.https://doi.org/10.3159/09-RA-024.1N. Ubierna, A. S. Kumar, L. A. Cernusak, R. E. Pangle, P. J. Gag, J. D. Marshall Storage and transpiration have negligible effects on 13C of stem CO2 efflux in large conifer trees, Tree Physiology 29, no.1212 (Oct 2009): 1563–1574.https://doi.org/10.1093/treephys/tpp089Peter Kitin, Tomoyuki Fujii, Hisashi Abe, Katsuhiko Takata Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica, Annals of Botany 103, no.77 (Mar 2009): 1145–1157.https://doi.org/10.1093/aob/mcp050Lance S. Evans, Zachary M. Testo, Jonathan A. Cerutti Characterization of internal airflow within tissues of mangrove species from Australia: leaf pressurization processes 1, The Journal of the Torrey Botanical Society 136, no.11 (Jan 2009): 70–83.https://doi.org/10.3159/08-RA-078R1.1Dirk Gansert, Stephan Blossfeld The Application of Novel Optical Sensors (Optodes) in Experimental Plant Ecology, (Jan 2008): 333–358.https://doi.org/10.1007/978-3-540-72954-9_14An Saveyn, Kathy Steppe, Mary Anne McGuire, Raoul Lemeur, Robert O. Teskey Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration, Oecologia 154, no.44 (Oct 2007): 637–649.https://doi.org/10.1007/s00442-007-0868-yLance S. Evans, Maryvic F. de Leon, Erika Sai Anatomy And Morphology Of Rhizophora Stylosa In Relation To Internal Airflow And Attim's Plant Architecture, The Journal of the Torrey Botanical Society 135, no.11 (Jan 2008): 114–125.https://doi.org/10.3159/07-RA-027R.1Robert O. Teskey, An Saveyn, Kathy Steppe, Mary Anne McGuire Origin, fate and significance of CO 2 in tree stems, New Phytologist 177, no.11 (Nov 2007): 17–32.https://doi.org/10.1111/j.1469-8137.2007.02286.xAn Saveyn, Kathy Steppe, Raoul Lemeur Daytime Depression in Tree Stem CO 2 Efflux Rates: Is it Caused by Low Stem Turgor Pressure?, Annals of Botany 99, no.33 (Jan 2007): 477–485.https://doi.org/10.1093/aob/mcl268Kathy Steppe, An Saveyn, Mary Anne McGuire, Raoul Lemeur, Robert O. Teskey Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems, Functional Plant Biology 34, no.99 (Jan 2007): 785.https://doi.org/10.1071/FP07077CHRIS A. MAIER, BARTON D. CLINTON Relationship between stem CO 2 efflux, stem sap velocity and xylem CO 2 concentration in young loblolly pine trees, Plant, Cell & Environment 29, no.88 (Apr 2006): 1471–1483.https://doi.org/10.1111/j.1365-3040.2006.01511.xCHRISTIANE WITTMANN, HARDY PFANZ, FRANCESCO LORETO, MAURO CENTRITTO, FABRIZIO PIETRINI, GIORGIO ALESSIO Stem CO 2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration?, Plant, Cell & Environment 29, no.66 (Apr 2006): 1149–1158.https://doi.org/10.1111/j.1365-3040.2006.01495.xJohannes Sorz, Peter Hietz Gas diffusion through wood: implications for oxygen supply, Trees 20, no.11 (Aug 2005): 34–41.https://doi.org/10.1007/s00468-005-0010-xLance S. Evans, Yuuya Okawa, Dennis G. Searcy Anatomy and morphology of red mangrove (Rhizophora mangle) plants in relation to internal airflow, The Journal of the Torrey Botanical Society 132, no.44 (Oct 2005): 537–550.https://doi.org/10.3159/1095-5674(2005)132[537:AAMORM]2.0.CO;2Dirk Gansert Treelines of the Japanese Alps – altitudinal distribution and species composition under contrasting winter climates, Flora - Morphology, Distribution, Functional Ecology of Plants 199, no.22 (Jan 2004): 143–156.https://doi.org/10.1078/0367-2530-00143D. GANSERT Xylem sap flow as a major pathway for oxygen supply to the sapwood of birch ( Betula pubescens Ehr.), Plant, Cell & Environment 26, no.1111 (Sep 2003): 1803–1814.https://doi.org/10.1046/j.1365-3040.2003.01097.xMichele L. Pruyn, Barbara L. Gartner, Mark E. Harmon Within‐stem variation of respiration in Pseudotsuga menziesii (Douglas‐fir) trees, New Phytologist 154, no.22 (Apr 2002): 359–372.https://doi.org/10.1046/j.1469-8137.2002.00380.xAndrés Miguel del Hierro, Winfried Kronberger, Peter Hietz, Ivo Offenthaler, Hanno Richter A new method to determine the oxygen concentration inside the sapwood of trees, Journal of Experimental Botany 53, no.368368 (Mar 2002): 559–563.https://doi.org/10.1093/jexbot/53.368.559Kishore S. Rajput Stem anatomy of Amaranthaceae: Rayless nature of xylem, Flora - Morphology, Distribution, Functional Ecology of Plants 197, no.33 (Jan 2002): 224–232.https://doi.org/10.1078/0367-2530-00033D. Gansert, M. Burgdorf, R. Lösch A novel approach to the in situ measurement of oxygen concentrations in the sapwood of woody plants, Plant, Cell & Environment 24, no.1010 (Jul 2008): 1055–1064.https://doi.org/10.1046/j.1365-3040.2001.00751.xKishore S. Raiput, K. S. Rao OCCURRENCE OF INTERCELLULAR SPACES IN CAMBIAL RAYS KISHORE S. RAJPUT, Israel Journal of Plant Sciences 46, no.44 (Jan 1998): 299–302.https://doi.org/10.1080/07929978.1998.10676739Kirk J. Havens The effect of vegetation on soil redox within a seasonally flooded forested system, Wetlands 17, no.22 (Jun 1997): 237–242.https://doi.org/10.1007/BF03161412Simcha Lev-Yadun, Roni Aloni Differentiation of the ray system in woody plants, The Botanical Review 61, no.11 (Jan 1995): 45–84.https://doi.org/10.1007/BF02897151 Simcha Lev-Yadun , and Roni Aloni The Role of Wounding and Partial Girdling in Differentiation of Vascular Rays, International Journal of Plant Sciences 153, no.3, Part 13, Part 1 (Oct 2015): 348–357.https://doi.org/10.1086/297039Helmut Tributsch The water-cohesion-tension insufficiency syndrome of forest decline, Journal of Theoretical Biology 156, no.22 (May 1992): 235–267.https://doi.org/10.1016/S0022-5193(05)80675-7Chris van der Schoot, Aart J. E. van Bel ARCHITECTURE OF THE INTERNODAL XYLEM OF TOMATO (SOLANUM LYCOPERSICUM) WITH REFERENCE TO LONGITUDINAL AND LATERAL TRANSFER, American Journal of Botany 76, no.44 (Apr 1989): 487–503.https://doi.org/10.1002/j.1537-2197.1989.tb11341.xS. F. IREMONGER, D. L. KELLY The responses of four Irish wetland tree species to raised soil water levels, New Phytologist 109, no.44 (Apr 2006): 491–497.https://doi.org/10.1111/j.1469-8137.1988.tb03725.xBilly J. Good, William H. Patrick Gas composition and respiration of water oak (Quercus nigra L.) and green ash (Fraxinus pennsylvanica Marsh.) roots after prolonged flooding, Plant and Soil 97, no.33 (Oct 1987): 419–427.https://doi.org/10.1007/BF02383232RAYMOND H. FROEND, ELIZABETH M. HEDDLE, DAVID T. BELL, ARTHUR J. McCOMB Effects of salinity and waterlogging on the vegetation of Lake Toolibin, Western Australia, Australian Journal of Ecology 12, no.33 (Jul 2006): 281–298.https://doi.org/10.1111/j.1442-9993.1987.tb00949.xKaren L. McKee, Irving A. Mendelssohn Root metabolism in the black mangrove (Avicennia germinans (L.) L): Response to hypoxia, Environmental and Experimental Botany 27, no.22 (Apr 1987): 147–156.https://doi.org/10.1016/0098-8472(87)90065-7G. T. Jane, T. G. A. Green Etiology of forest dieback areas within the Kaimai Range, North Island, New Zealand, New Zealand Journal of Botany 24, no.44 (Oct 1986): 513–527.https://doi.org/10.1080/0028825X.1986.10409939JOSÉ PEÑA, JOHN GRACE WATER RELATIONS AND ULTRASOUND EMISSIONS OF PINUS SYLVESTRIS L. BEFORE, DURING AND AFTER A PERIOD OF WATER STRESS, New Phytologist 103, no.33 (May 2006): 515–524.https://doi.org/10.1111/j.1469-8137.1986.tb02889.xW. Grosse, P. Schröder Aeration of the Roots and Chloroplast‐free Tissues of Trees, Berichte der Deutschen Botanischen Gesellschaft 98, no.11 (Nov 2013): 311–318.https://doi.org/10.1111/j.1438-8677.1985.tb02923.xDavid J. Hicks, Brian F. Chabot Deciduous forest, (Jan 1985): 257–277.https://doi.org/10.1007/978-94-009-4830-3_12J. Sid McKnight, Donal D. Hook, O. Gordon Langdon, Robert L. Johnson Flood Tolerance and Related Characteristics of Trees of the Bottomland Forests of the Southern United States, (Jan 1981): 29–69.https://doi.org/10.1016/B978-0-444-42020-6.50010-XA. R. SENA GOMES, T. T. KOZLOWSKI Responses of Melaleuca quinquenervia seedlings to flooding, Physiologia Plantarum 49, no.44 (Aug 1980): 373–377.https://doi.org/10.1111/j.1399-3054.1980.tb03319.xA. R. Sena Gomes, T. T. Kozlowski Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings, Oecologia 46, no.22 (Jan 1980): 139–142.https://doi.org/10.1007/BF00540117DAVID D. DAVIES Anaerobic Metabolism and the Production of Organic Acids, (Jan 1980): 581–611.https://doi.org/10.1016/B978-0-12-675402-5.50020-9W. Armstrong Aeration in Higher Plants, (Jan 1980): 225–332.https://doi.org/10.1016/S0065-2296(08)60089-0R. M. M. Crawford Biochemical and ecological similarities in marsh plants and diving animals, Naturwissenschaften 65, no.44 (Apr 1978): 194–201.https://doi.org/10.1007/BF00450588P. L. Sanderson, W. Armstrong Soil waterlogging, root rot and conifer windthrow: oxygen deficiency or phytoxicity?, Plant and Soil 49, no.11 (Feb 1978): 185–190.https://doi.org/10.1007/BF02149920Lewis H. Stolzy, H. Flühler MEASUREMENT AND PREDICTION OF ANAEROBIOSIS IN SOILS, (Jan 1978): 363–426.https://doi.org/10.1016/B978-0-12-518401-4.50028-6R. M. M. CRAWFORD, MARGARET A. BAINES TOLERANCE OF ANOXIA AND THE METABOLISM OF ETHANOL IN TREE ROOTS, New Phytologist 79, no.33 (May 2006): 519–526.https://doi.org/10.1111/j.1469-8137.1977.tb02236.xWolfgang Hagemann, Ulrich Hamann Morphologie und Anatomie der höheren Pflanzen, (Jan 1976): 32–57.https://doi.org/10.1007/978-3-642-66511-0_2T.T. Kozlowski WATER SUPPLY AND LEAF SHEDDING, (Jan 1976): 191–231.https://doi.org/10.1016/B978-0-12-424154-1.50011-5Christopher J. Gill The Ecological Significance of Adventitious Rooting as a Response to Flooding in Woody Species, with Special Reference to Alnus glutinosa (L.) Gaertn., Flora 164, no.11 (Jan 1975): 85–97.https://doi.org/10.1016/S0367-2530(17)31790-5
Referência(s)