Micronization of Pharmaceutical Substances by Rapid Expansion of Supercritical Solutions (RESS): Experiments and Modeling
2002; Wiley; Volume: 19; Issue: 5 Linguagem: Inglês
10.1002/1521-4117(200211)19
ISSN1521-4117
AutoresMichael Türk, B. Helfgen, P. Hils, R. Lietzow, Karlheinz Schaber,
Tópico(s)Subcritical and Supercritical Water Processes
ResumoParticle & Particle Systems CharacterizationVolume 19, Issue 5 p. 327-335 Review Micronization of Pharmaceutical Substances by Rapid Expansion of Supercritical Solutions (RESS): Experiments and Modeling Michael Türk, Michael Türk [email protected] Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorBritta Helfgen, Britta Helfgen Degussa AG, VT-P, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany.Search for more papers by this authorPeter Hils, Peter Hils Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorRalph Lietzow, Ralph Lietzow Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorKarlheinz Schaber, Karlheinz Schaber Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this author Michael Türk, Michael Türk [email protected] Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorBritta Helfgen, Britta Helfgen Degussa AG, VT-P, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany.Search for more papers by this authorPeter Hils, Peter Hils Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorRalph Lietzow, Ralph Lietzow Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this authorKarlheinz Schaber, Karlheinz Schaber Universität Karlsruhe (TH), Institut für Technische Thermodynamik und Kältetechnik, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany.Search for more papers by this author First published: 04 November 2002 https://doi.org/10.1002/1521-4117(200211)19:5 3.0.CO;2-VCitations: 55AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract An increasing number of newly developed pharmaceutical substances are poorly soluble in both aqueous and organic media. Thus, the application of oral or injectable drugs is often limited by its low bioavailability. An alternative and promising method to improve the bioavailability of pharmaceutical agents is the production of nanoscale particles by the rapid expansion of supercritical solutions (RESS). Our research is aimed towards an improved understanding of the underlying physical phenomena of the relationship between the process conditions and the particle characteristics. Therefore, experimental investigations and numerical simulations were performed. RESS experiments with the pharmaceutical substances β-sitosterol, griseofulvin, and ibuprofen led to particle sizes in the range of 240±80 nm. In addition, as one step towards intravenous application of poorly soluble drugs, β-sitosterol was used to produce aqueous suspensions of a water-insoluble drug with a particle size smaller than or equal to those produced by RESS into air. RESS modeling is focused on the flow through the nozzle, the supersonic free jet, the mach shock, and particle growth in the expansion unit. The comparison with experimental results shows a good agreement in the general trends but does not match exactly the measured mean particle sizes. References 1 R. H. Müller, B. H. L. Böhm, M. J. Grau, Nanosuspensionen – Formulierungen für schwerlösliche Arzneistoffe mit geringer Bioverfügbarkeit, 1. Mitteilung: Herstellung und Eigenschaften, 2. Mitteilung: Stabilität, biopharmazeutische Aspekte, mögliche Arzneiformen und Zulassungsfragen. Pharm. Ind. 1999, 61, 74–78, 175-178. 2 B. Subramaniam, R. A. Rajewski, K. Snavely, Pharmaceutical Processing with Supercritical Carbon Dioxide. J. Pharm. Sci. 1997, 86, 885–890. 3 J. M. Wong, K. P. Johnston, Solubilization of Biomolecules in Carbon Dioxide-Based Supercritical Solutions. Biotechnol. Progess 1986, 2, 29–39. 4 P. G. Debenedetti, Homogeneous Nucleation in Supercritical Fluids. AIChE J. 1990, 36, 1289–1298. 5 M. Türk, Formation of Small Organic Particles by RESS: Experimental and Theoretical Investigations. J. Supercrit. Fluids 1999, 15, 79–89. 6 B. Helfgen, M. Türk, K. Schaber, Theoretical and Experimental Investigations of the Micronization of Organic Solutes by Rapid Expansion of Supercritical Solutions J. Powder Technol. 2000, 110, 22–28. 7 P. Hils, B. Helfgen, M. Türk, K. Schaber, H.-J. Martin, P. C. Schmidt, M. A. Wahl, Nanoscale Particles for Pharmaceutical Purpose by Rapid Expansion of Supercritical Solutions (RESS); Part I: Experiments and Modeling. Proc. of the 7th Meeting on Supercritical Fluids, Tome 1: Particle Design, Materials and Reactions, December 6–8, 2000, Antibes, France, 27–32. 8 M. Türk, P. Hils, B. Helfgen, K. Schaber, H.-J. Martin, M. A. Wahl, Micronisation of Pharmaceutical Substances by Rapid Expansion of Supercritical Solutions (RESS): A Promising Method to Improve the Bioavailability of Poorly Soluble Pharmaceutical Agents. J. Supercrit. Fluids 2002, 22, 75–84. 9 C. A. Eckert, B. L. Knutson, P. G. Debenedetti, Supercritical Fluids as Solvents for Chemical and Materials Processing. Nature 1996, 383, 313–318. 10 J. W. Tom, P. G. Debenedetti, Particle Formation with Supercritical Fluids – A Review. J. Aerosol Sci 1991, 22, 555–584. 11 J. E. F. Reynolds, Martindale, The Extra Pharmacopoeia. London 1996, p. 407. 12 H.-J. Martin, P. C. Schmidt, M. A. Wahl, P. Hils, B. Helfgen, M. Türk, K. Schaber, Nanoscale Particles for Pharmaceutical Purpose by Rapid Expansion of Supercritical Solutions (RESS); Part II: Characterization of the Product and Use. Proc. of the 7th Meeting on Supercritical Fluids, Tome 1: Particle Design, Materials and Reactions, December 6–8, 2000, Antibes, France, 53–57. 13 S. Falbe, M. Regnitz, Roempp Chemie-Lexikon. Band 3, Thieme Verlag Stuttgart, 10. Auflage. 14 M. Charoenchaitrakool, F. Dehghani, N. R. Foster, H. K. Chan, Micronization by Rapid Expansion of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39, 4794–4802. 15 G. M. Schneider, Physicochemical Aspects of Fluid Extraction. Fluid Phase Equilib. 1983, 10, 141–157. 16 B. Platzer, G. Maurer, A Generalized Equation of State for Pure Polar and Nonpolar Fluids. Fluid Phase Equilib. 1989, 10, 223–236. 17 W. J. Schmitt, R. C. Reid, Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids. Chem. Eng. Data 1986, 31, 204–212. 18 S. Cihlar, M. Türk, K. Schaber, Micronization of Organic Solids by Rapid Expansion of Supercritical Solutions. Proc. of the World Congress on Particle Technology 3 1998, Brighton, UK, 380. 19 S. Cihlar, Mikronisierung organischer Feststoffe durch schnelle Expansion überkritischer Lösungen. PhD Thesis, Universität Karlsruhe (TH), 2000. 20 J. Meyer, M. Katzer, E. Schmidt, S. Cihlar, M. Türk, Comparative Particle Size Measurements in Lab-Scale Production Processes. Proc. of the World Congress on Particle Technology 3 1998, Brighton, UK, 31. 21 E. Reverchon, Della G. Porta, R. Taddeo, Solubility and Micronization of Griseofulvin in Supercritical CHF3. Ind. Eng. Chem. Res. 1995, 34, 4087–4091. 22 M. Türk, Erzeugung von organischen Nanopartikeln mit überkritischen Fluiden, Habilitationsschrift, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe (TH), 2001. 23 M. Türk, Influence of Thermodynamic Behavior and Solute Properties on Homogeneous Nucleation in Supercritical Solutions. J. Supercrit. Fluids 2000, 18, 169–184. 24 M. Türk, P. Hils, B. Helfgen, K. Schaber, H.-J. Martin, M. A. Wahl, Micronisation of Pharmaceutical Substances by Rapid Expansion of Supercritical Solutions (RESS). Proc. of the 2nd International Meeting on High Pressure Chemical Engineering, March 7–9, 2001, Hamburg-Harburg. 25 T. J. Young, S. Mawson, K. P. Johnston, I. B. Hendriksen, G. W. Pace, A. K. Mishra, Rapid Expansion from Supercritical to Aqueous Solution to Produce Submicron Suspensions of Water-Insoluble Drugs. Biotechnol. Prog. 2000, 16, 402–407. 26 B. Helfgen, P. Hils, Ch. Holzknecht, M. Türk, K. Schaber, Simulation of Particle Formation during the Rapid Expansion of Supercritical Solutions. J. Aerosol Sci. 2001, 32, 1–26. 27 S. K Friedlander, Smoke, Dust, and Haze, Fundamentals of Aerosol Behavior. John Wiley and Sons, New York, London, Sydney, Toronto, 1977. 28 S. E. Pratsinis, Simultaneous Nucleation, Condensation, and Coagulation in Aerosol Reactors J. Colloid Interf. Sci. 1988, 128, 416–427. 29 B. Helfgen, Simulation der Strömung und der Partikelbildung bei der schnellen Expansion überkritischer Lösungen (RESS) zur Herstellung pharmazeutischer Nanopartikeln, PhD Thesis, Universität Karlsruhe (TH), 2001. 30 B. Helfgen, M. Türk, K. Schaber, Hydrodynamic and Aerosol Modeling of the Rapid Expansion of Supercritical Solutions (RESS-Process). J. Supercrit. Fluids in press. Citing Literature Volume19, Issue5November 2002Pages 327-335 ReferencesRelatedInformation
Referência(s)