Artigo Revisado por pares

The Neurobiology of Fear: Relevance to Panic Disorder and Posttraumatic Stress Disorder

2000; Slack Incorporated (United States); Volume: 30; Issue: 12 Linguagem: Inglês

10.3928/0048-5713-20001201-07

ISSN

1938-2456

Autores

Justine Kent, Gregory M. Sullivan, Scott L. Rauch,

Tópico(s)

Anxiety, Depression, Psychometrics, Treatment, Cognitive Processes

Resumo

ANXIETY DISORDERSThe Neurobiology of Fear: Relevance to Panic Disorder and Posttraumatic Stress Disorder Justine M Kent, MD, , , MD Gregory M Sullivan, MD, , and , MD Scott L Rauch, MD, , MD Justine M Kent, MD , Gregory M Sullivan, MD , and Scott L Rauch, MD Published Online:December 01, 2000https://doi.org/10.3928/0048-5713-20001201-07PDFView Full Text ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInRedditEmail SectionsMore1. Cannon WB. Emergency function of the adrenal medulla in pain and major emotions. Am J Physiol. 1914;3:356-372. Google Scholar2. LeDoux J. The Emotional Brain, New York: Simon & Schuster; 1996:163-165. Google Scholar3. Davis M. Pharmacological and anatomical analysis oí ear conditioning using the fear-potentiated startle paradigm. Behav Neurosa. 1986;100:814-824. Google Scholar4. Davis M. The role of the amygdala in fear and anxiety, Annu Rev Neurosci. 1992;15:353-375. Google Scholar5. LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nudeus mediate autonomic and behavioral correlates of conditioned fear. / Neurosci. 1988;8:2517-2519. Google Scholar6. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. / Neurosci. 1990:10:10621069. Google Scholar7. Takeuchi Y, McLean JH, Hopkins DA. Reciprocal connections between the amygdala and parabrachial nuclei: ultrastructural demonstration by degeneration and axonal transport of horseradish peroxidase in the cat. Brain Res. 1982;239:583-588. Google Scholar8. Price JL, Amarai DG. An autoradiographic study of the projections of the central nudeus of the monkey amygdala. / Neurosci. 1981;1:1242-1259. Google Scholar9. Cedarbaum JM, Aghajanian GK. Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. / Comp Neurol. 1978;178:1-16. Google Scholar10. Dunn JD, Whitener J. Plasma corticosterone response to electrical stimulation of the amygdaloid complex: cytoarchitectural specificity. Neuroendocrinology, 1986;42:211217. Google Scholar11. DeOca BM, DeCoIa JP, Maren S, Fanselow MS. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosa. 1998;18:3426-3432. Google Scholar12. de Olmos J. Amygdaloid nuclear gray complex. In: Paxinos G, ed. The Human Nervous System. San Diego: Academic Press; 1990:583-710. Google Scholar13. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256:675-677. Google Scholar14. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosa. 1992;106:274-285. Google Scholar15. Morgan MA, LeDoux JE. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosa. 1995;109:681-688. Google Scholar16. Garcia R, VOuimba RM, Baudry M, Thompson RF. The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature. 1999;402:294-296. Google Scholar17. Aggleton JP, ed. The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction. New York: Wiley-Liss; 1992:255-305. Google Scholar18. Morris JS, Frith CD, Perret DL et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature. 1996;383:812-815. Google Scholar19. Whalen PJ, Rauch SL, Etcoff NL, Mclnerney SC, Lee MB, Jenike MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. / Neurosa. 1998;18:411^18. Google Scholar20. Fredrikson M, Wik G, Fischer H, Andersson J. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. Neuroreport. 1995;7:97-101. Google Scholar21. Hugdahl K, Berardi A, Thompson WL, et al. Brain mechanisms in human classical conditioning: a PET blood flow study. Neuroreport. 1995;6:1723-1728. Google Scholar22. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron. 1998;20:937-945. Google Scholar23. Ketter TA, Andreason PJ, George MS, et al. Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch Gen Psychiatry. 1996; 53:59-69. Google Scholar24. Benkelfat C, Bradwejn J, Meyer E, et al. Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am J Psychiatry. 1995;152:1180-1184. Google Scholar25. Javanmard M, Shlik J, Kennedy SH, Vaccarino FJ, Houle S, Bradwejn J. Neuroanatomic correlates of CCK-4induced panic attacks in healthy humans: a comparison of two time points. Biol Psychiatry. 1999;45:872-882. Google Scholar26. Nordahl TE, Stein MB, Benkelfat C, et al. Regional cerebral metabolic asymmetries replicated in an independent group of patients with panic disorder. Biol Psychiatry. 1998;44:998-1006. Google Scholar27. Reiman EM, Raichle ME, Butler FK, Herscoviteh P, Robins E. A focal brain abnormality in panic disorder: a severe form of anxiety. Nature: 1984;310:683-685. Google Scholar28. Reiman E, Raichle ME, Robins E, et al. The application of positron emission tomography to the study of panic disorder. Am J Psychiatry. 1986;143:469-477. Google Scholar29. Stewart RS, Devous MD Sr, Rush AJ, Lane L, Bonte FJ. Cerebral blood flow changes during sodium-lactateinduced panic attacks. Am J Psychiatry. 1988;145:442-449. Google Scholar30. Woods SW, Koster K, Krystal JK, et al. Yohimbine alters regional cerebral blood flow in panic disorder. Lancet. 1988;2:678. Google Scholar31. Reiman EM, Raichle ME, Robins E, et al. Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry. 1989;46:493-500. Google Scholar32. Copian J, Klein D. Pharmacologic probes in panic disorder. In: Advances in the Neurobiology of Anxiety Disorders. New York: John Wiley & Sons; 1996:179-204. Google Scholar33. Sullivan GM, Copian JD, Kent JM, Gorman JM. The noradrenergic system in pathological anxiety: a focus on panic with relevance to generalized anxiety and phobias, Biol Psychiatry. 1999;46:1205-1218. Google Scholar34. Gray TS. Amygdaloid CRF pathways: role in autonomic, neuroendocrine, and behavioral response to stress. Ann NY Acad Sci. 1993;697:53-60. Google Scholar35. Chalmers DT, Lovenberg TW, DeSouza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRFl receptor mRNA expression. J Neurosa. 1995;15:6340-6350. Google Scholar36. Van Bockstaele EJ, ColagO EE, Valentino RJ. Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the coordination of emotional and cognitive limbs of the stress response. J Neuroendocrinal. 10:743-757. Google Scholar37. Graeff FG, Guimaraes FS, DeAndrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129-141. Google Scholar38. Wetzler S, Asnis GM, DeLecuona JM, Kalus O. Serotonin function in panic disorder: intravenous administration of meta-chlorophenylpiperazine. Psychiatry Res. 1996;64:7782. Google Scholar39. Davidson J. Use of benzodiazepines in panic disorder. J Clin Psychiatry. 1997;58(suppl 2):26-28. Google Scholar40. Feistel H. Assessment of cerebral benzodiazepine receptor distribution in anxiety disorders: a study with 1-123iomazenil. / Nucl Med. 1993;34:47P. Google Scholar41. Kaschka W, Feistel H, Ebert D, et al. Cerebral GABA A J benzodiazepine receptor distribution in anxiety disorder. Clin Neuropharmacol 1992;15(suppl):27B, Google Scholar42. Kuikka JT, Pitkanen A, Lepóla U, et al. Abnormal regional benzodiazepine receptor uptake in the prefrontal cortex in patients with panic disorder. Nucl Med Commun. 1995;16:273-280. Google Scholar43. Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ. Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry. 1998;55:715-720. Google Scholar44. Abadie P, Boulenger JP, Benali K, Barre L, Zarifian E, Baron JC. Relationships between trait and state anxiety and the central benzodiazepine receptor: a PET study. Eur J Neurosa. 1999;11:1470-1478. Google Scholar45. Copian JD, Pine D, Papp L, et al. Uncoupling of the noradrenergic-hypothalarnic-pituitary-adrenal axis in panic disorder patients. Neuropsychopharmacology. 1995;13:65-73. Google Scholar46. Copian JD, Papp LA, Pine D, et al. Clinical improvement wim fluoxetine therapy and noradrenergic function in patients with panic disorder. Arch Gen Psychiatry. 1997; 54:643-648. Google Scholar47. Copian JD, Goetz R, Klein DF, et al. Plasma Cortisol concentrations preceding lactate-induced panic: psychological, biochemical, and physiological correlates. Arch Gen Psychiatry. 1998;55:130-136. Google Scholar48. Rauch S, Shin L, Whalen P, et al. Neuroimaging and the neuroanatomy of PTSD. CNS Specirums. 1998;3(suppl 2):30-41. Google Scholar49. Whalen PJ, Bush G, McNaUy RJ, et al. The emotional counting stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division, Biol Psychiatry. 1998;44:1219-1228. Google Scholar50. Bremner JD, Randall P, Scott TM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152:973-981. Google Scholar51. Gurvits TV, Shenton ME, Hokama H, et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40:1091-1099. Google Scholar52. Stein MB, Koverola C, Hanna C, Torchia MG, McClarty B. Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med. 1997;27:951-959. Google Scholar53. Sapolsky R. Stress: The Aging Brain, and the Mechanisms of Neuron Death. Cambridge, MA: MIT Press; 1992. Google Scholar54. Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol Psychiatry. 1999;45:806-816. Google Scholar55. Shin LM, McNaIIy RJ, Kosslyn SM, et al. Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry. 1999;156:575-584. Google Scholar56. Liberzon I, Taylor SF, Amdur R, et al. Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry. 1999;45:817-826. Google Scholar57. Bremner JD, Innis RB, Ng CK, et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997; 54:246-254. Google Scholar58. Blanchard E, KoIb L, Gerardi R. Cardiac response to relevant stimuli as an adjunctive tool for diagnosing posttraumatic stress disorder in Vietnam veterans. Behav Ther. 1986;17:592-606. Google Scholar59. Pitman RK, Orr SP, Forgue DF, dejong JB, Claiborn JM. Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch Gen Psychiatry, 1987;44:970-975. Google Scholar60. Butler RW, Braff DL, Rausch JL, Jenkins MA, Sprock J, Geyer MA. Physiological evidence of exaggerated startle response in a subgroup of Vietnam veterans with combatrelated PTSD. Am ] Psychiatry. 1990;147:1308-1312. Google Scholar61. Morgan CA DL Grillon C, Southwick SM, Davis M, Charney DS. Fear-potentiated startle in posttraumatic stress disorder. Biol Psychiatry. 1995;38:378-385. Google Scholar62. Rainey JM Jr, Aleem A, Ortiz A, Yeragani V, Pohl R, Berchov R. A laboratory procedure for the induction of flashbacks. Am } Psychiatry. 1987;144:1317-1319. Google Scholar63. Southwick SM, Krystal JH, Morgan CA, et al. Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50:266-274. Google Scholar64. Kosten TR, Mason JW, Gtiler EL, Ostroff RB, Harkness L. Sustained urinary norepinephrine and epinephrine elevation in post-traumatic stress disorder. Psychoneuroendocrinology. 1987;12:13-20. Google Scholar65. McFaIl ME, Veith RC, Murburg MM. Basal sympathoadrenal function in posttraumatic distress disorder, Biol Psychiatry. 1992;31:1050-1056. Google Scholar66. Murburg MM, McFaIl ME, Lewis N, Veith RC. Plasma norepinephrine kinetics in patients with posttraumatic stress disorder. Biol Psychiatry. 1995;38:819-825. Google Scholar67. Yehuda R, Southwick SM, Nussbaum G, Wahby V, Güter EL Jr, Mason JW. Low urinary Cortisol excretion in patients with posttraumatic stress disorder. J Nerv Ment Dis. 1990;178:366-369. Google Scholar68. Lemieux AM, Coe CL. Abuse-related posttraumatic stress disorder: evidence for chronic neuroendocrine activation in women. Psychosom Med. 1995;57:105-115. Google Scholar69. Stein MB, Yehuda R, Koverola C, Hanna C Enhanced deXamethasone suppression of plasma Cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry, 1997;42:680-686. Google Scholar70. Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW. Enhanced suppression of Cortisol following dexamethasone administration in posttraumatic stress disorder. Am / Psychiatry. 1993;150:83-86. Google Scholar71. Yehuda R. Linking the neuroendocrinology of post-traumatic stress disorder with recent neuroanatomic findings. Semin Clin Neuropsychiatry. 1999;4:256-265. Google Scholar Previous article Next article FiguresReferencesRelatedDetails Request Permissions InformationCopyright 2013, SLACK IncorporatedPDF download

Referência(s)
Altmetric
PlumX