Artigo Revisado por pares

Entropy boundary and jump conditions in the theory of sedimentation with compression

1998; Wiley; Volume: 21; Issue: 9 Linguagem: Inglês

10.1002/(sici)1099-1476(199806)21

ISSN

1099-1476

Autores

Raimund Bürger, Wolfgang L. Wendland,

Tópico(s)

Nonlinear Partial Differential Equations

Resumo

Mathematical Methods in the Applied SciencesVolume 21, Issue 9 p. 865-882 Research Article Entropy boundary and jump conditions in the theory of sedimentation with compression R. Bürger, R. Bürger Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this authorW. L. Wendland, Corresponding Author W. L. Wendland Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanyInstitute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany===Search for more papers by this author R. Bürger, R. Bürger Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanySearch for more papers by this authorW. L. Wendland, Corresponding Author W. L. Wendland Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, GermanyInstitute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany===Search for more papers by this author First published: 04 December 1998 https://doi.org/10.1002/(SICI)1099-1476(199806)21:9 3.0.CO;2-9Citations: 23AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We present an initial–boundary value problem of a quasilinear degenerate parabolic equation for the settling and consolidation of a flocculated suspension. The corresponding definition of generalized solutions is formulated. It is based on an entropy integral inequality in the sense of Kružkov. From this definition, jump and entropy conditions that have to be satisfied at discontinuities, and an entropy condition valid on one boundary of the computational domain are derived. The latter implies a set-valued reformulation of the original boundary condition. It is interpreted geometrically and characterized by the solution of an auxiliary hyperbolic Riemann problem. © 1998 B. G. Teubner Stuttgart–John Wiley & Sons, Ltd. References 1 Bardos, C., Le Roux, A. Y. and Nedelec, J. C., 'First order quasilinear equations with boundary conditions', Commun. Partial Differential Equations, 4 (9), 1017–1034 (1979). 10.1080/03605307908820117 Google Scholar 2 Been, K. and Sills, G. C., 'Self-weight consolidation of soft soils: an experimental and theoretical study', Geotechnique, 31, 519–535 (1981). 10.1680/geot.1981.31.4.519 Web of Science®Google Scholar 3 Bürger, R., ' Ein Anfangs-Randwertproblem einer quasilinearen entarteten parabolischen Gleichung in der Theorie der Sedimentation mit Kompression', Doctoral Dissertation, University of Stuttgart, Germany, 1996. Google Scholar 4 Bürger, R. and Wendland, W. L., 'Existence, stability and uniqueness of generalized solutions of an initial-boundary value problem for a degenerating quasilinear parabolic equation', preprint 97–39, SFB 404, University of Stuttgart, 1997; J. Math. Anal. Appl., to appear. Google Scholar 5 Bustos, M. C. and Concha, F., 'Simulation of batch sedimentation with compression', A. I. Ch. E. J., 34 (5), 859–861 (1988). 10.1002/aic.690340517 CASWeb of Science®Google Scholar 6 Bustos, M. C. and Concha, F., ' Kynch theory of sedimentation' in: Sedimentation of Small Particles in a Viscous Fluid, ( E. Tory, Ed.), Computational Mechanics Publications, Southampton, U. K, 1996, pp. 7–49. Google Scholar 7 Bustos, M. C., Concha, F. and Wendland, W. L., 'Global weak solutions to the problem of continuous sedimentation of an ideal suspension', Math. Meth. in the Appl. Sci., 13, 1–22 (1990). 10.1002/mma.1670130102 Web of Science®Google Scholar 8 Bustos, M. C., Concha, F. and Wendland, W. L., ' Sedimentation with compression. Part II: numerical solution', University of Concepción, 1992. Google Scholar 9 Bustos, M. C., Paiva, F. and Wendland, W. L., 'Control of continuous sedimentation of ideal suspensions as an initial and boundary value problem', Math. Meth. in the Appl. Sci., 12, 533–548 (1990). 10.1002/mma.1670120607 Web of Science®Google Scholar 10 Bustos, M. C., Paiva, F. and Wendland, W. L., 'Entropy boundary conditions in the theory of sedimentation of ideal suspensions', Math. Meth. in the Appl. Sci., 19, 679–697 (1996). 10.1002/(SICI)1099-1476(199606)19:9 3.0.CO;2-L Web of Science®Google Scholar 11 Cheuquepán, F., Paiva, F. and Bustos, M. C., ' Una condición de Rankine-Hugoniot para el problema de sedimentatión con compresión', Manuscript, University of Concepción, Chile, 1990. Google Scholar 12 Concha, F. and Bustos, M. C., 'Settling velocities of particulate systems: 6. Kynch sedimentation processes: Batch settling', Int. J. Min. Proc., 32, 193–212 (1991). 10.1016/0301-7516(91)90068-T CASWeb of Science®Google Scholar 13 Concha, F. and Bustos, M. C., 'Settling velocities of particulate systems: 7. Kynch sedimentation processes: continuous thickening', Int. J. Min. Proc., 34, 33–51 (1992). 10.1016/0301-7516(92)90014-N CASWeb of Science®Google Scholar 14 Concha, F., Bustos, M. C. and Barrientos, A., ' Phenomenological theory of sedimentation', in: Sedimentation of Small Particles in a Viscous Fluid, ( E. Tory, ed.), Computational Mechanics Publications, Southampton, U. K, 1996, pp. 51–96. Google Scholar 15 Concha, F., Bustos, M. C., Oelker, E. and Wendland, W. L., ' Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes I: Batch sedimentation', Int. J. Min. Proc., submitted. Google Scholar 16 Dubois, F. and Le Floch, P., 'Boundary conditions for nonlinear hyperbolic systems of conservation laws', J. Differential Equations, 71, 93–122 (1988). 10.1016/0022-0396(88)90040-X Web of Science®Google Scholar 17 Kružkov, S. N., 'First order quasilinear equations in several independent variables', Math. USSR Sbornik, 10 (2), 217–243 (1970). 10.1070/SM1970v010n02ABEH002156 Google Scholar 18 Kynch, G. J., 'A theory of sedimentation', Trans. Farad. Soc., 48, 166–176 (1952). 10.1039/tf9524800166 CASWeb of Science®Google Scholar 19 Le Veque, R. J., Numerical Methods for Conservation Laws, 2nd edn, Birkhäuser Verlag, Basel, 1992. 10.1007/978-3-0348-8629-1 Google Scholar 20 Oleínik, O. A., 'Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation', AMS Trans. Ser. 2, 33, 285–290 (1963). Google Scholar 21 Richardson, J. F. and Zaki, W. N., 'The sedimentation of uniform spheres under conditions of viscous flow', Chem. Engrg. Sci., 3, 65–73 (1954). 10.1016/0009-2509(54)85015-9 CASWeb of Science®Google Scholar 22 Schiffman, R. L., Pane, V. and Gibson, R. E., ' The theory of one-dimensional consolidation of saturated clays, IV. An overview of nonlinear finite strain sedimentation and consolidation', in: Sedimentation and Consolidation models, Predictions and Validations, Proc. ASCE Symp. (R. Yong, ed.), San Francisco; New York 1984. Google Scholar 23 Vol'pert, A. I., 'The spaces BV and quasilinear equations', Math. USSR Sbornik, 2 (2), 225–267 (1967). 10.1070/SM1967v002n02ABEH002340 Google Scholar 24 Vol'pert, A. I. and Hudjaev, S. I., 'Cauchy's problem for degenerate second order quasilinear parabolic equations', Math. USSR Sbornik, 7 (3), 365–387 (1969). 10.1070/SM1969v007n03ABEH001095 Google Scholar 25 Vol'pert, A. I. and Hudjaev, S. I., Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Martinus Nijhoff Publishers, Dordrecht 1985. Google Scholar 26 Wu, Zhuoqun, 'A note on the first boundary value problem for quasilinear degenerate parabolic equations', Acta Math. Sci., 4 (2), 361–373 (1982). Web of Science®Google Scholar 27 Wu, Z., ' A boundary value problem for quasilinear degenerate parabolic equations', University of Wisconsin, MRC Technical Summary Report 2484, 1983. Google Scholar 28 Wu, Z. and Wang, J.-Y., ' Some results on quasilinear degenerate parabolic equations of second order', Proc. 1980 Beijing Symp. on Differential Geometry and Differential Equations, Vol. 3, Science Press, Beijing, Gordon & Breach, Science Publishers Inc., New York, 1982. Google Scholar 29 Wu, Z. and Yin, J., 'Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations', Northeastern Math. J., 5 (4), 395–422 (1989). Google Scholar Citing Literature Volume21, Issue9June 1998Pages 865-882 ReferencesRelatedInformation

Referência(s)