Artigo Produção Nacional Revisado por pares

Sparse Techniques in Global Flow Instability with Application to Compressible Leading-Edge Flow

2013; American Institute of Aeronautics and Astronautics; Volume: 51; Issue: 9 Linguagem: Inglês

10.2514/1.j051816

ISSN

1533-385X

Autores

Elmer M. Gennaro, Daniel Rodríguez, Marcello Augusto Faraco de Medeiros, Vassilios Theofilis,

Tópico(s)

Fluid Dynamics and Vibration Analysis

Resumo

No AccessTechnical NoteSparse Techniques in Global Flow Instability with Application to Compressible Leading-Edge FlowE. M. Gennaro, D. Rodríguez, M. A. F. Medeiros and V. TheofilisE. M. GennaroSao Carlos School of Engineering, University of Sao Paulo, 13563-120 Sao Carlos, Brazil, D. RodríguezSchool of Aeronautics, Universidad Politécnica de Madrid, California Institute of Technology, 91125 Pasadena, California, M. A. F. MedeirosSao Carlos School of Engineering, University of Sao Paulo, 13563-120 Sao Carlos, Brazil and V. TheofilisSchool of Aeronautics, Universidad Politécnica de Madrid, E-28040 Madrid, SpainPublished Online:20 Aug 2013https://doi.org/10.2514/1.J051816SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Theofilis V., "Advances in Global Linear Instability of Nonparallel and Three-Dimensional Flows," Progress in Aerospace Sciences, Vol. 39, No. 4, 2003, pp. 249–315. doi:https://doi.org/10.1016/S0376-0421(02)00030-1 PAESD6 0376-0421 CrossrefGoogle Scholar[2] Theofilis V., "Global Linear Instability," Annual Review of Fluid Mechanics, Vol. 43, Jan. 2011, pp. 319–352. doi:https://doi.org/10.1146/annurev-fluid-122109-160705 ARVFA3 0066-4189 CrossrefGoogle Scholar[3] Saad Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2000, pp. 151–161. Google Scholar[4] Rodríguez D. and Theofilis V., "Massively Parallel Numerical Solution of the BiGlobal Linear Instability Eigenvalue Problem Using Dense Linear Algebra," AIAA Journal, Vol. 47, No. 10, 2009, pp. 2449–2459. doi:https://doi.org/10.2514/1.42714 AIAJAH 0001-1452 LinkGoogle Scholar[5] Kitsios V., Rodríguez D., Theofilis V., Ooi A. and Soria J., "BiGlobal Stability Analysis in Curvilinear Coordinates of Massively Separated Lifting Bodies," Journal of Computational Physics, Vol. 228, No. 19, 2009, pp. 7181–7196. doi:https://doi.org/10.1016/j.jcp.2009.06.011 JCTPAH 0021-9991 CrossrefGoogle Scholar[6] Hernández V., Román J. E., Tomás A. and Vidal V., "A Survey of Software for Sparse Eigenvalue Problem," Univ. Politécnica de Valencia, Scalable Library for Eigenvalue Problem Computations TR-STR-6, 2007, http://www.grycap.upv.es/slepc [retrieved 2013]. Google Scholar[7] Schmid P. and Henningson D., Stability and Transition in Shear Flows, Springer, New York, 2001. CrossrefGoogle Scholar[8] Crouch J. D., Garbaruk A. and Magidov D., "Predicting the Onset of Flow Unsteadiness Based on Global Instability," Journal of Computational Physics, Vol. 224, No. 2, 2007, pp. 924–940. doi:https://doi.org/10.1016/j.jcp.2006.10.035 JCTPAH 0021-9991 CrossrefGoogle Scholar[9] Crouch J. D., Garbaruk A., Magidov D. and Travin A., "Origin of Transonic Buffet on Aerofoils," Journal of Fluid Mechanics, Vol. 628, June 2009, pp. 357–369. doi:https://doi.org/10.1017/S0022112009006673 JFLSA7 0022-1120 CrossrefGoogle Scholar[10] Amestoy P. R., Duff I. S., L'Excellent J.-Y. and Koster J., "A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling," SIAM Journal on Matrix Analysis and Applications, Vol. 23, No. 1, 2001, pp. 15–41. doi:https://doi.org/10.1137/S0895479899358194 SJMAEL 0895-4798 CrossrefGoogle Scholar[11] Hall P., Malik M. R. and Poll D. I. A., "On the Stability of an Infinitive Swept Attachment Line Boundary Layer," Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 395, No. 1809, 1984, pp. 229–245. doi:https://doi.org/10.1098/rspa.1984.0099 PRLAAZ 1364-5021 CrossrefGoogle Scholar[12] Hiemenz K., "Die Grenzschicht an Einem in den Gleichförmigen Flüssigkeitsstrom Eingetauchten Geraden Kreiszylinder," Dinglers Polytechnisches Journal, Vol. 326, 1911, pp. 321–324. Google Scholar[13] Görtler H., "Dreidimensionale Instabilität der Ebenen Staupunktströmung Gegenüber Wirbelartigen Störungen," 50 Jahre Grenzschichtforschung, edited by Görtler H. and Tollmien W., Vieweg und Sohn, Brunswick, Germany, 1955, pp. 304–314. CrossrefGoogle Scholar[14] Hämmerlin G., "Zur Instabilitätstheorie der Ebenen Staupunktströmung," 50 Jahre Grenzschichtforschung, edited by Görtler H. and Tollmien W., Vieweg und Sohn, Brunswick, Germany, 1955, pp. 315–327. CrossrefGoogle Scholar[15] Theofilis V., "Numerical Experiments on the Stability of Leading-Edge Boundary-Layer Flow: A 2-Dimensional Linear Study," International Journal for Numerical Methods in Fluids, Vol. 16, No. 2, 1993, pp. 153–170. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar[16] Theofilis V., "Spatial Stability of Incompressible Attachment-Line Flow," Theoretical and Computational Fluid Dynamics, Vol. 7, No. 3, 1995, pp. 159–171. doi:https://doi.org/10.1007/BF00312360 TCFDEP 0935-4964 CrossrefGoogle Scholar[17] Lin R. S. and Malik M. R., "On the Stability of Attachment-Line Boundary Layers, Part 1: The Incompressible Swept Hiemenz Flow," Journal of Fluid Mechanics, Vol. 311, March 1996, pp. 239–255. doi:https://doi.org/10.1017/S0022112096002583 JFLSA7 0022-1120 CrossrefGoogle Scholar[18] Theofilis V., Fedorov A., Obrist D. and Dallmann U. C., "The Extended Görtler-Hämmerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary Layer Flow," Journal of Fluid Mechanics, Vol. 487, June 2003, pp. 271–313. doi:https://doi.org/10.1017/S0022112003004762 JFLSA7 0022-1120 CrossrefGoogle Scholar[19] Theofilis V., Fedorov A. V. and Collis S. S., "Leading-Edge Boundary Layer Flow: Prandtl's Vision, Current Developments and Future Perspectives," IUTAM Symposium on One Hundred Years of Boundary Layer Research, Vol. 129, Springer, Netherlands, 2004, pp. 73–82. Google Scholar[20] Xiong Z. and Lele S. K., "Distortion of Upstream Disturbances in a Hiemenz Boundary Layer," Journal of Fluid Mechanics, Vol. 519, Nov. 2004, pp. 201–232. doi:https://doi.org/10.1017/S0022112004001247 JFLSA7 0022-1120 CrossrefGoogle Scholar[21] Xiong Z. and Lele S. K., "Stagnation-Point Flow Under Free-Stream Turbulence," Journal of Fluid Mechanics, Vol. 590, Nov. 2007, pp. 1–33. doi:https://doi.org/10.1017/S0022112007007768 JFLSA7 0022-1120 CrossrefGoogle Scholar[22] Collis S. S. and Lele S. K., "Receptivity to Surface Roughness Near a Swept Leading Edge," Journal of Fluid Mechanics, Vol. 380, Feb. 1999, pp. 141–168. doi:https://doi.org/10.1017/S0022112098003449 JFLSA7 0022-1120 CrossrefGoogle Scholar[23] Lin R. S. and Malik M. R., "On the Stability of Attachment-Line Boundary Layers, Part 2: The effect of Leading-Edge Curvature," Journal of Fluid Mechanics, Vol. 333, Feb. 1997, pp. 125–137. doi:https://doi.org/10.1017/S0022112096004260 JFLSA7 0022-1120 CrossrefGoogle Scholar[24] Le Duc A., Sesterhenn J. and Friedrich R., "Instabilities in Compressible Attachment-Line Boundary Layers," Physics of Fluids, Vol. 18, No. 4, 2006, Paper 044102. doi:https://doi.org/10.1063/1.2187450 PHFLE6 1070-6631 CrossrefGoogle Scholar[25] Mack C. J., Schmid P. J. and Sesterhenn J. L., "Global Stability of Swept Flow Around a Parabolic Body: Connecting Attachment-Line and Crossflow Modes," Journal of Fluid Mechanics, Vol. 611, Sept. 2008, pp. 205–214. doi:https://doi.org/10.1017/S0022112008002851 JFLSA7 0022-1120 CrossrefGoogle Scholar[26] Mack C. J. and Schmid P. J., "A Preconditioned Krylov Technique For Global Hydrodynamic Stability Analysis of Large-Scale Compressible Flows," Journal of Computational Physics, Vol. 229, No. 3, 2010, pp. 541–560. doi:https://doi.org/10.1016/j.jcp.2009.09.019 JCTPAH 0021-9991 CrossrefGoogle Scholar[27] Mack C. J. and Schmid P. J., "Direct Numerical Study of Hypersonic Flow Around a Swept Parabolic Body," Computers and Fluids, Vol. 39, No. 10, 2010, pp. 1932–1943. doi:https://doi.org/10.1016/j.compfluid.2010.06.025 CPFLBI 0045-7930 CrossrefGoogle Scholar[28] Mack C. J. and Schmid P. J., "Global Stability of Swept Flow Around a Parabolic Body: Features of the Global Spectrum," Journal of Fluid Mechanics, Vol. 669, Feb. 2011, pp. 375–396. doi:https://doi.org/10.1017/S0022112010005252 JFLSA7 0022-1120 CrossrefGoogle Scholar[29] Bertolotti F. P., "On the Connection Between Cross–Flow Vortices and Attachment–Line Instabilities," Proceedings of the IUTAM Laminar-Turbulent Symposium V, edited by Saric W. and Fasel H., Springer, Berlin, New York, 2000, pp. 625–630. Google Scholar[30] Cohen C. B. and Reshotko E., "Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient," NACA Rept. 1293, 1956. Google Scholar[31] Mack L. M., "Boundary Layer Linear Stability Theory," AGARD R-709, 1984, pp. 3.1–3.81. Google Scholar[32] Theofilis V. and Colonius T., "Three-Dimensional Instabilities of Compressible Flow Over Open Cavities: Direct Solution of the BiGlobal Eigenvalue Problem," AIAA Paper 2004-2544, 2004. Google Scholar[33] Canuto C., Hussaini M. Y., Quarteroni A. and Zang T. A., Spectral Methods: Fundamentals in Single Domains, Springer, New York, 2006. CrossrefGoogle Scholar[34] Amestoy P. R., Davis T. A. and Duff I. S., "An approximate Minimum Degree Ordering Algorithm," SIAM Journal on Matrix Analysis and Applications, Vol. 17, No. 4, 1996, pp. 886–905. doi:https://doi.org/10.1137/S0895479894278952 CrossrefGoogle Scholar[35] Schulze J., "Towards a Tighter Coupling of Bottom-Up and Top-Down Sparse Matrix Ordering Methods," BIT: Numerical Mathematics, Vol. 41, No. 4, 2001, pp. 800–841. doi:https://doi.org/10.1023/A:1021908421589 CrossrefGoogle Scholar[36] Karypis G. and Kumar V., METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 4.0, Univ. of Minnesota, Minneapolis, MN, 1998. Google Scholar[37] Golub G. and van Loan C., Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MD, 1983, pp. 125–136. Google Scholar[38] Gennaro E. M., Rodríguez D. A., Theofilis V. and Medeiros M. A. F., "Linear Instability of Orthogonal Compressible Leading-Edge Boundary Layer Flow," AIAA Paper 2011-3751, 2011. LinkGoogle Scholar[39] Lele S. J., "Compact Finite Difference Schemes with Spectral-Like Resolution," Journal of Computational Physics, Vol. 103, No. 1, 1992, pp. 16–42. doi:https://doi.org/10.1016/0021-9991(92)90324-R JCTPAH 0021-9991 CrossrefGoogle Scholar[40] Hermanns M. and Hernandez J. A., "Stable High-Order Finite-Difference Methods Based on Non-Uniform Grid Point Distributions," International Journal for Numerical Methods in Fluids, Vol. 56, No. 3, 2008, pp. 233–255. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar[41] Paredes P., Hermanns M., Le Clainche S. and Theofilis V., "Order 104 Speedup in Global Linear Instability Analysis Using Matrix Formation," Computer Methods in Applied Mechanics and Engineering, Vol. 253, Jan. 2013, pp. 287–304. doi:https://doi.org/10.1016/j.cma.2012.09.014 CMMECC 0045-7825 CrossrefGoogle Scholar Previous article Next article

Referência(s)
Altmetric
PlumX