Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen
1996; Elsevier BV; Volume: 51; Issue: 8 Linguagem: Inglês
10.1016/0006-2952(96)85085-4
ISSN1873-2968
AutoresJohn O. Miners, Sally Coulter, Robert H. Tukey, Maurice E. Veronese, Donald Birkett,
Tópico(s)Pharmacogenetics and Drug Metabolism
ResumoA preliminary report implicated cytochrome P450 (CYP) 2C9 in the human liver microsomal O-demethylation of S-naproxen, suggesting that this pathway may be suitable for investigation of human hepatic CYP2C9 in vitro. Kinetic and inhibitor studies with human liver microsomes and confirmatory investigations with cDNA-expressed enzymes were undertaken here to define the role of CYP2C9 and other isoforms in the O-demethylation of R- and S-naproxen. All studies utilised a newly developed sensitive and specific HPLC assay that measured the respective O-desmethyl metabolites of R- and S-naproxen in incubations of human liver microsomes and in COS cell lysates. Microsomal R- and S-naproxen O-demethylation kinetics followed Michaelis-Menten kinetics, with respective mean apparent Km values of 123 μM and 143 μM. Sulfaphenazole, a specific inhibitor of CYP2C9, reduced the microsomal O-demethylation of R-and S-naproxen by 43% and 47%, respectively, and the CYP1A2 inhibitor furafylline decreased R- and S-naproxen O-demethylation by 38% and 28%, respectively. R,S-Mephenytoin was a weak inhibitor of R- and S-naproxen O-demethylation, but other CYP isoform specific inhibitors (e.g., coumarin, diethyldithiocarbamate, quinidine, troleandomycin) had little or no effect on these reactions. cDNA-expressed CYP2C9 and CYP1A2 were both shown to O-demethylate R- and S-naproxen. Apparent Km values (92–156 μM) for the reactions catalysed by the recombinant enzymes were similar to those observed for human liver microsomal R- and S-naproxen O-demethylation. The data demonstrate that CYP2C9 and CYP1A2 together account for the majority of human liver R- and S-naproxen O-demethylation, precluding the use of either R- or S-naproxen as a CYP isoform-specific substrate in vitro and in vivo.
Referência(s)