Artigo Acesso aberto Revisado por pares

A Tissue-Like Printed Material

2013; American Association for the Advancement of Science; Volume: 340; Issue: 6128 Linguagem: Inglês

10.1126/science.1229495

ISSN

1095-9203

Autores

Gabriel Villar, Alexander Graham, Hagan Bayley,

Tópico(s)

Supramolecular Self-Assembly in Materials

Resumo

Living cells communicate and cooperate to produce the emergent properties of tissues. Synthetic mimics of cells, such as liposomes, are typically incapable of cooperation and therefore cannot readily display sophisticated collective behavior. We printed tens of thousands of picoliter aqueous droplets that become joined by single lipid bilayers to form a cohesive material with cooperating compartments. Three-dimensional structures can be built with heterologous droplets in software-defined arrangements. The droplet networks can be functionalized with membrane proteins; for example, to allow rapid electrical communication along a specific path. The networks can also be programmed by osmolarity gradients to fold into otherwise unattainable designed structures. Printed droplet networks might be interfaced with tissues, used as tissue engineering substrates, or developed as mimics of living tissue.

Referência(s)