Effect of dietary canthaxanthin on the growth and lipid composition of red porgy ( Pagrus pagrus )
2013; Wiley; Volume: 46; Issue: 4 Linguagem: Inglês
10.1111/are.12245
ISSN1365-2109
AutoresCarmen Tatiana Kalinowski, J. Socorro, L. Robaina,
Tópico(s)Reproductive biology and impacts on aquatic species
ResumoAquaculture ResearchVolume 46, Issue 4 p. 893-900 Original Article Effect of dietary canthaxanthin on the growth and lipid composition of red porgy (Pagrus pagrus) Carmen Tatiana Kalinowski, Corresponding Author Carmen Tatiana Kalinowski Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainCorrespondence: C T Kalinowski, Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Trasmontaña s/n, 35413 Arucas, Las Palmas, Canary Islands, Spain. E-mail: [email protected]Search for more papers by this authorJuan Socorro, Juan Socorro Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainSearch for more papers by this authorLidia Ester Robaina, Lidia Ester Robaina Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainSearch for more papers by this author Carmen Tatiana Kalinowski, Corresponding Author Carmen Tatiana Kalinowski Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainCorrespondence: C T Kalinowski, Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Trasmontaña s/n, 35413 Arucas, Las Palmas, Canary Islands, Spain. E-mail: [email protected]Search for more papers by this authorJuan Socorro, Juan Socorro Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainSearch for more papers by this authorLidia Ester Robaina, Lidia Ester Robaina Grupo de Investigación en Acuicultura, University of Las Palmas de Gran Canaria, Instituto Universitario de Sanidad Animal, Las Palmas, Canary Islands, SpainSearch for more papers by this author First published: 19 July 2013 https://doi.org/10.1111/are.12245Citations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract A 24-week feeding trial was conducted to study the possible effect of dietary canthaxanthin on red porgy growth and lipid composition. Two triplicate groups were established to test two experimental diets: (1) Control group fed a diet with no added carotenoids, and (2) canthaxanthin group (CTX100) fed a diet with 100 mg of synthetic canthaxanthin per kilogram of diet (CTX). Final and eviscerated weight were increased (P < 0.05) in the CTX100 treatment. The rest of growth performance parameters were not affected by the CTX diet. Whole-fish total lipid content was decreased (P < 0.05) in CTX100 fish. In the liver, total lipids were not affected; however, saturated fatty acids in CTX100 treatment were significantly lower together with a higher n-3 PUFA and a lower n-6 PUFA, therefore increasing the n-3/n-6 ratio. Liver histology of CTX100 fish revealed decreased lipid vacuolization thus, significantly lowering hepatocyte area. In the muscle, total lipids were not affected. Similar to the liver, an increase of n-3 PUFA and decrease n-6 PUFA, led to a significant increase of the n-3/n-6 ratio. Concerning plasma, only total cholesterol (TC) was significantly affected by the CTX diet. Dietary canthaxanthin has an effect on red porgy lipid composition. References Ahmadi M.R., Bazyar A.A. & Safi S. (2010) Effects of dietary astaxanthin supplementation on reproductive characteristics of rainbow trout (Oncorhynchus mykiss). Journal of Applied Ichthyology 22, 388– 394. Amar E.C., Kiron V., Akutsu T., Satoh S. & Watanabe T. (2012) Resistance of Rainbow Trout Oncorhynchus Mykiss to Infectious Hematopoietic Necrosis Virus (IHNV) Experimental Infection Following Ingestion of Natural and Synthetic Carotenoids. Aquaculture 330\x96333, 148– 155. AOAC (1997) Official Methods of Analysis (16th edn). Association of Official Analytical Chemists, Washington, DC. Aoi W., Naito Y., Takanami Y., Ishii T., Kawai Y., Akagiri S., Kato Y., Osawa T. & Yoshikawa T. (2008) Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochemical Biophysical Research Communications 366, 892– 897. Barua A.B., Kostic D. & Olson J.A. (1993) New simplified procedures for the extraction and simultaneous high performance liquid chromatographic analysis of retinol, tocopherols, and carotenoids in human serum. Journal of Chromatography 617, 257– 264. Bell J.G., McEvoy J., Tocher D.R. & Sargent J.R. (2000) Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. Journal of Nutrition 130, 1800– 1808. Blanchard G. (2008) Influence de facteurs nutritionnels et d′elevage sur le statut hépatique et la composition lipidique de tissus cible chez la perche Perca fluviatis (Linné, 1758). PhD thesis, University of Namur, Belgique 152pp. Britton G. (1995) UV/Visible spectroscopy. In Carotenoids: Spectroscopy. Vol. 1B (ed. by G. Britton, S. Liaaen-Jensen & H. Pfander). Birkäusen, Basel. Christiansen R. & Torrissen O.J. (1996) Growth and survival of Atlantic salmon, Salmo salar L. fed different dietary levels of astaxanthin. Juveniles. Aquaculture Nutrition 2, 55– 62. Christiansen R. & Torrissen O.J. (1997) Effects of dietary astaxanthin supplementation on fertilization and egg survival in Atlantic salmon (Salmo salar L.). Aquaculture 153, 51– 62. Christiansen R., Lie Ø. & Torrissen O.J. (1995) Growth and survival of Atlantic salmon, Salmo salar L., fed different levels of astaxanthin. First-feeding fry. Aquaculture Nutrition 1, 189– 198. Christie W.W. (1982) Lipid Analysis. Pergamon, Oxford. Folch J., Lees M.S. & Stanley G.H.S. (1957) A simple method for the isolation and purification of total lipids from animal tissue. Journal Biological Chemistry 22, 6479– 6509. Halliwell B. (1996) Antioxidants in human health and disease. Annual Review Nutrition 16, 33– 50. Hosokawa M., Miyashita T., Nishikawa S., Emi S., Tsukui T., Beppu F., Okada T. & Miyashita K. (2010) Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Archives of Biochemistry and Biophysics 504, 17– 25. Hu X., Li Y., Li Ch, Fu Y., Cai F., Chen Q. & Li D. (2012) Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Archives of Biochemistry and Biophysics 519, 59– 65. Ikeuchi M., Koyama T., Takahashi J. & Yazawa K. (2006) Effects of astaxanthin supplementation on exercise induced fatigue in mice. Biological and Pharmaceutical Bulletin 29, 2106– 2110. Ikeuchi M., Koyama T., Takahashi J. & Yazawa K. (2007) Effects of astaxanthin in obese mice fed a high fat diet. Bioscience, Biotechnology, and Biochemistry 71, 893– 899. Ikeuchi M., Koyama T., Takahashi J. & Yazawa K. (2008) Effects of astaxanthin and exercise on mitochondrial enzymes in mice. The 15th international symposium on carotenoids, Okinawa, Japan, vol 12, p. 15. Izquierdo M.S., Arakawa T., Takeuchi T., Haroun R. & Watanabe T. (1992) Effect of n-3 HUFA levels in Artemia on growth of larval japanese flounder (Paralichthys olivaceous). Aquaculture 105, 73– 82. Kalinowski C.T., Robaina L., Fernández-Palacios H., Schuchardt D. & Izquierdo M.S. (2005) Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. Aquaculture 244, 223– 231. Kalinowski C.T., Robaina L. & Izquierdo M.S. (2011) Effect of dietary astaxanthin on the growth performance, lipid composition and post-mortem skin colouration of red porgy (Pagrus pagrus). Aquaculture International 19, 811– 823. Maeda H., Hosokawa M., Sashima T., Funayama K. & Miyashita K. (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications 332, 392– 397. Nakano T., Kanmuri T., Sato M. & Takeuchi M. (1999) Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout. Biochemical Biophysical Acta 1426, 119– 125. Page G.I., Russell P.M. & Davies S.J. (2005) Dietary carotenoid pigment supplementation influences hepatic lipid and mucopolysaccharide levels in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry Physiology 142B, 398– 402. Pan C.H., Chien Y.H. & Wang Y.J. (2011) Antioxidant defence to ammonia stress of characins (Hyphessobrycon eques Steindachner) fed diets supplemented with carotenoids. Aquaculture Nutrition 17, 258– 266. RuiLi Yang M.S., Guowei L., Anlin Li M.S., Jianling Zheng M.S. & Yonghui Shi M.S. (2006) Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 22, 1185– 1191. Sargent J., Henderson R.J. & Tocher D.R. (1989) The lipids. In: Fish Nutrition. (ed. by J.E. Halver), pp. 154– 218. Academic Press, San Diego. Sawanboonchun J., Roy W.J., Robertson D.A. & Bell J.G. (2008) The impact of dietary supplementation with astaxanthin on egg quality in Atlantic cod broodstock (Gadus morhua, L.). Aquaculture 283, 97– 101. Segner H., Arend P., Von Poeppinghaussen K. & Schmidt H. (1989) The effect of feeding astaxanthin to Oreochromis niloticus and Colisa labiosa on the histology of the liver. Aquaculture 79, 381– 390. Sheikhzadeh N., Tayefi-Nasrabadi H., Oushani A.K. & Enferad M.H.N. (2012) Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry 38, 413– 419. Sies H. (1986) Biochemistry of oxidative stress. Angewandte Chemie International Edition England 25, 1058– 1071. Stahl W. & Sies H. (2003) Antioxidant activity of carotenoids. Molecular Aspects Medicine 24, 345– 351. Takeuchi L., Takeda H. & Watanabe T. (1979) Availability of dietary phosphorus in carp and rainbow trout. Bulletin Japanese Society Science Fish 45, 1527– 1532. Tejera N., Cejas J.R., Rodríguez C., Bjerkeng B., Jerez S., Bolaños A. & Lorenzo A. (2007) Pigmentation, carotenoids, lipid peroxides and lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplemented with different astaxanthin sources. Aquaculture 270, 218– 230. Tocher D. (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Revision Fish Science 11, 107– 184. Tsukui T., Konno K., Hosokawa M., Maeda H., Sashima T. & Miyashita K. (2007) Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. Journal of Agricultural and Food Chemistry 55, 5025– 5029. Tsukui T., Hosokawa M. & Miyashita K. (2008) Enhancement of hepatic DHA in mice by dietary fucoxanthin. The 15th international symposium on carotenoids, Okinawa, Japan, vol 12, p. 131. Wang Y.J., Chien Y.H. & Pan C.H. (2006) Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture 261, 641– 648. Weber S. (1988) Determination of stabilised added astaxanthin in fish feeds and premixes with HPLC. In: Analytical Methods for Vitamins and Carotenoids in Feed, Vol. 2264 (ed. by H.E. Keller), pp. 59– 61. Roche Publication, Dublin. White D.A., Ørnsrud R. & Davies S.J. (2003) Determination of carotenoid and vitamin A concentrations in everted salmonids intestine following exposure to solutions of carotenoid in vitro. Comparative Biochemistry Physiology 136B, 683– 692. Woo M., Jeon S., Shin Y., Lee M., Kang M. & Choi M. (2009) Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Molecular Nutrition Food Research 53, 1603– 1611. Woo M., Jeon S., Kim H., Lee M., Shin S., Shin Y., Park Y. & Choi M. (2010) Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chemico-Biological Interactions 186, 316– 322. Yazawa K. (2008) Astaxanthin and exercise – A new strategy for weight management. The 15th International Symposium on carotenoids, Okinawa, Japan, vol 12, p. 13. Citing Literature Volume46, Issue4April 2015Pages 893-900 ReferencesRelatedInformation
Referência(s)