Revisão Acesso aberto

Ipidacrine (NIK‐247): A Review of Multiple Mechanisms as an Antidementia Agent

1998; Wiley; Volume: 4; Issue: 3 Linguagem: Inglês

10.1111/j.1527-3458.1998.tb00067.x

ISSN

1527-3458

Autores

Jun Kojima, Kenji Onodera, Mitsuo Ozeki, Kunio Nakayama,

Tópico(s)

Chemical Reaction Mechanisms

Resumo

CNS Drug ReviewsVolume 4, Issue 3 p. 247-259 Free Access Ipidacrine (NIK-247): A Review of Multiple Mechanisms as an Antidementia Agent Jun Kojima, Corresponding Author Jun Kojima Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaDr. J. Kojima, Department of Pharmacology, Omiya Research Laboratory, Nikken Chemicals Co., Ltd., 1-346, Kitabukuro, Omiya, Saitama, 330, Japan. Fax: +(81) 048-645-0751.Search for more papers by this authorKenji Onodera, Kenji Onodera Department of Pharmacology, Tohoku University School of Dentistry, Sendai, JapanSearch for more papers by this authorMitsuo Ozeki, Mitsuo Ozeki Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaSearch for more papers by this authorKunio Nakayama, Kunio Nakayama Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaSearch for more papers by this author Jun Kojima, Corresponding Author Jun Kojima Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaDr. J. Kojima, Department of Pharmacology, Omiya Research Laboratory, Nikken Chemicals Co., Ltd., 1-346, Kitabukuro, Omiya, Saitama, 330, Japan. Fax: +(81) 048-645-0751.Search for more papers by this authorKenji Onodera, Kenji Onodera Department of Pharmacology, Tohoku University School of Dentistry, Sendai, JapanSearch for more papers by this authorMitsuo Ozeki, Mitsuo Ozeki Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaSearch for more papers by this authorKunio Nakayama, Kunio Nakayama Omiya Research Laboratory, Nikken Chemicals Co., Ltd., Omiya, SaitamaSearch for more papers by this author First published: 07 June 2006 https://doi.org/10.1111/j.1527-3458.1998.tb00067.xCitations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat REFERENCES 1 Araujo DM, Lapchak PA, Robitaille Y, Gauthier S, Quirion R. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease. J Neurochem 1988; 50: 1914– 1923. 2 Barnes CA. Spatial learning and memory processes: the search for their neurobiological mechanism in the rat. TINS 1988; 11: 163– 169. 3 Bliss TVP, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993; 361: 31– 39. 4 Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232: 331– 356. 5 Blitzer RD, Gil O, Landau EM. Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 1990; 119: 207– 210. 6 Bruno G, Mohr E, Gillespie M, Fedio P, Chase TN. Muscarinic agonist therapy of Alzheimer's disease. A clinical trial of RS-86. Arch Neurol 1986; 43: 659– 661. 7 Burov Y, Cadysheva L, Rodakidze T, Peganov E, Voronin A, Parvez H. Pharmacological effects of amiridin. Eur J Pharmacol 1990; 183: 1464. 8 Christie JE, Shering A, Ferguson J, Glenn AIM. Physostigmine and arecoline. Effects of intravenous infusion in Alzheimer presenile dementia. Br J Psychiat 1981; 138: 46– 50. 9 Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. New York : Oxford University Press, 1986: 173– 202. 10 Davies P. Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 1979; 117: 319– 327. 11 Davis KL, Mohs RC. Enhancement of memory processes in Alzheimer's disease with multiple-dose intravenous physostigmine. Am J Psychiatry 1982; 139: 1421– 1424. 12 Doyere V, Laroche S. Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 1992; 2: 39– 48. 13 Drachman CA, Leavit J. Human memory and the cholinergic system. Arch Neurol 1974; 30: 113– 121. 14 Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88– 95. 15 Elrod K, Buccafusco JJ. An evaluation of the mechanism of scopolamine-induced impairment in two passive avoidance protocols. Pharmacol Biochem Behav 1988; 29: 15– 21. 16 Emmerling MR, Gregor VE, Callahan MJ, et al. CI-1002, A combined acetylcholinesterase inhibitor and muscarinic antagonist. CNS Drug Reviews 1995; 1: 27– 49. 17 Emilien G. Effects of clonidine, yohimbine and eserine on the quantified EEG of rats. Arch Int Pharmacodyn Ther 1990; 304: 105– 124. 18 Enaceur A, Meliani K. Effects of physostigmine and scopolamine on rats' performances in object-recognition and radial-maze tests. Psychopharmacology 1992; 109: 321– 330. 19 Flynn DD, Weinstein DA, Mash DC. Loss of high affinity agonist binding to M1 muscarinic receptors in Alzheimer's disease: Implications for the failure of cholinergic replacement therapies. Ann Neurol 1991; 29: 256– 262. 20 Francis PT, Palmer AM, Sims NR, et al. Neurochemical studies of early onset Alzheimer's disease; possible influence or treatment. N Engl J Med 1985; 313: 7– 11. 21 Freeman SE, Dawson RM. Tacrine: A pharmacological review. Prog Neurobiol 1991; 36: 257– 277. 22 Goyal RK. Muscarinic receptor subtypes. Physiology and clinical implications. N Engl J Med 1989; 321: 1022– 1025. 23 Hernandez-Hernandez A, Adem A, Ravid R, Cowburn RF. Preservation of acetylcholine muscarinic M2 receptor G-protein interactions in the neocortex of patients with Alzheimer's disease. Neurosci Lett 1995; 186: 57– 60. 24 Horovitz ZP, Chow MI. Effect of centrally acting drugs on the correlation of electrocortical activity and wakefulness of cats. J Pharmacol Exp Ther 1962; 137: 127– 132. 25 Hulme EC, Birdsall NJM, Buckley NJ. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 1990; 30: 633– 673. 26 Hunter AJ, Murray TK, Osborne JM, Cross AJ, Green AR. The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro. Br J Pharmacol 1989; 98: 79– 86. 27 Ishii Y, Kojima J, Ikeda N, Kawashima K. Effect of NIK-247 on basal concentrations of extracellular acetylcholine in the cerebral cortex of conscious, freely moving rats. Jpn J Pharmacol 1994; 66: 289– 293. 28 Kawashima K, Sato A, Yoshizawa M, Fujii T, Fujimoto K, Suzuki T. Effects of the centrally acting cholinesterase inhibitors tetrahydroaminoacridine and E2020 on the basal concentration of extracellular acetylcholine in the hippocampus of freely moving rats. Naunyn-Schmiedeberg's Arch Pharmacol 1994; 350: 523– 528. 29 Kiefer-Day JS, Abdallah EAM, Forray C, Lee NH, Kim ON, El-Fakahany EE. Effects of tacrine on brain muscarinic-receptor-mediated second-messenger signals. Pharmacology 1993; 47: 98– 110. 30 Kiefer-Day JS, Campbell HE, Towles J, El-Fakahany EE. Muscarinic subtype selectivity of tetrahydroaminoacridine: Possible relationship to its capricious efficacy. Eur J Pharmacol 1991; 203: 421– 423. 31 Kiefer-Day JS, El-Fakahany EE. Muscarinic receptor function and acetylcholinesterase activity after chronic administration of tacrine to mice at therapeutic drug concentrations. Pharmacology 1992; 44: 71– 80. 32 Knapp MJ, Knopman DS, Solomon PR, et al. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. JAMA 1994; 271: 985– 991. 33 Kojima J, Nakajima K, Ochiai M, Nakayama K. Effects of NIK-247 on cholinesterase and scopolamine-induced amnesia. Meth Find Exp Clin Pharmacol 1997; 19: 245– 251. 34 Kojima J, Onodera K. Effects of NIK-247 and tacrine on muscarinic receptor subtypes in rats. Gen Pharmacol 1998; 30: 537– 541. 35 Kojima J, Onodera K. NIK-247 induces long-term potentiation of synaptic transmission in the CA 1 region of rat hippocampal slices through M2 muscarinic receptors. Gen Pharmacol 1998; 31: 297– 300. 36 Kojima J, Sugawara Y, Obara S. NIK-247 blocks voltage-dependent ionic currents in crayfish axon. Jpn J Pharmacol 1991; 57: 545– 552. 37 Kojima J, Yamana K. Effects of NIK-247 on the spontaneous EEG of normal and nucleus basalis magnocellularis lesioned rats. Folia Pharmacol Jpn 1994; 104: 111– 120. 38 Lee W, Anwyl R, Rowan M. 4-Aminopyridine-mediated increase in a long-term potentiation in CA1 of the rat hippocampus. Neurosci Lett 1986; 70: 106– 109. 39 Levey AI, Hallonger AE, Wainer BH. Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci Lett 1987; 74: 7– 13. 40 Marshall IG. Structure-activity relationships amongst aminopyridines. In: P Lechat, S Thesleff, WC Bowman, eds. Advances in the biosciences. Vol. 35. Aminopyridines and similarly acting drugs: Effects on nerve, muscles and synapses. Oxford : Pergamon Press, 1982: 145– 162. 41 Mash DC, Flynn DD, Potter LT. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation. Science 1985; 228: 1115– 1117. 42 McNally W, Roth M, Young R, Bockbrader H, Chang T. Quantitative whole-body autoradiographic determination of tacrine tissue distribution in rats following intravenous or oral dose. Pharmaceut Res 1989; 6: 924– 930. 43 Mena EE, Desai MC. High-affinity [3H]THA (tetrahydroaminoacridine) binding sites in rat brain. Pharmacol Res 1991; 8: 200– 203. 44 Mesulam M-M, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 1983; 10: 1185– 1201. 45 Morris RG, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986; 319: 774– 776. 46 Morris RG, Garrud P, Rawlins JNP, O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature 1982; 297: 681– 683. 47 Nabeshima T, Yoshida S, Nabeshima T. Effects of the novel compound NIK-247 on impairment of passive avoidance response in mice. Eur J Pharmacol 1988; 154: 263– 270. 48 Nielsen JA, Mena EE, Williams IH, Nocerini MR, Listen D. Correlation of brain levels of 9-amino-1,2,3,4-tetrahydroacridine (THA) with neurochemical and behavioral changes. Eur J Pharmacol 1989; 173: 53– 64. 49 Onodera K, Kojima J, Wachi M. Ipidacrine (NIK-247), a novel antidementia drug, rapidly enters the brain and improves scopolamine-induced amnesia in the Morris water maze task in rats. Jpn J Psychopharmacol 1998; 18: 33– 37. 50 Patocka J, Bajagar J, Bielavsky J, Fusek J. Kinetics of inhibition of cholinesterase by 1,2,3,4-tetrahydro-9-aminoacridine in vitro. Collect Czech Chem Commun 1976; 41: 816– 824. 51 Pavia J, de Ceballos ML, Sanchez de la Cuesta F. Muscarinic receptors in Alzheimer's disease. Meth Find Exp Clin Pharmacol 1996; 18(Suppl 1): 71– 75. 52 Penn RD, Martin EM, Wilson RS, Fox JH, Savoy SM. Intraventricular bethanechol infusion for Alzheimer's disease: Results of double-blind and escalating-dose trials. Neurology 1988; 38: 219– 222. 53 Perry EK, Tomlinson BE, Blessed G, Bergman K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 1978; 2: 1456– 1459. 54 Perryman KM, Fitten LJ. Quantitative EEG during a double-blind trial of THA and lecithin in patients with Alzheimer's disease. J Geriatr Psychiatry Neurol 1991; 4: 127– 133. 55 Peters BH, Levin HS. Effects of physostigmine and lecithin on memory in Alzheimer's disease. Ann Neurol 1979; 6: 219– 221. 56 Petrides M. Frontal lobes and behaviour. Curr Opin Neurobiol 1994; 4: 207– 211. 57 Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: Results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia 1996; 7: 293– 303. 58 Sarvey JM. Protein synthesis in long-term potentiation and norepinephrine-induced long-lasting potentiation in hippocampus. In: PW Landfield, SA Deadwyler, eds. Long-term potentiation: From biophysics to behavior. New York : Alan R. Liss, 1988: 329– 354. 59 Sasaki Y, Suzuki K, Wachi M, Ochiai M, Fujita Y, Sato T. Physicochemical properties and stability of 9-ami-no-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinoline monohydrochloride monohydrate (NIK-247). Iyakuhin Kenkyu 1997; 28: 643– 653. 60 Smith CP, Bores GM, Petko W, et al. Pharmacological activity and safety profile of P10358, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J Pharmacol Exp Ther 1997; 280: 710– 720. 61 Spignoli G, Pepeu G. Interactions between oxiracetam, aniracetam, and scopolamine on behavior and brain acetylcholine. Biochem Behav 1987; 27: 491– 495. 62 Stern Y, Sano M, Mayeux R. Long-term administration of oral physostigmine in Alzheimer's disease. Neurology 1988; 38: 1837– 1841. 63 Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia. N Engl J Med 1986; 315: 1241– 1245. 64 Sunderland T, Tariot PN, Newhouse PA. Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations. Brain Res Rev 1988; 13: 371– 389. 65 Sutherland RJ, Whishaw IQ, Kolb B. A behavioral analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behav Brain Res 1983; 7: 133– 153. 66 Thal LJ, Masur DM, Blau AD, Fuld PA and Klauber MR. Chronic oral physostigmine without lecithin improves memory in Alzheimer's disease. J Am Geriatr Soc 1989; 37: 42– 48. 67 Ueki A, Miyoshi K. Effects of cholinergic drugs on learning impairment in ventral globus pallidus-lesioned rats. J Neurol Sci 1989; 90: 1– 21. 68 Vidaluc JL, Calmel F, Bigg D, et al. Novel [2-(4-piperidinyl)ethyl](thio)ureas: Synthesis and anticholinesterase activity. J Med Chem 1994; 37: 8689– 8695. 69 Wainer BH, Levey AI, Mufson EJ, Mesulam MM. Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase. Neurochem Int 1984; 6: 163. 70 Wanibuchi F, Nishida T, Yamashita H, et al. Characterization of a novel muscarinic receptor agonist, YM796: Comparison with cholinesterase inhibitors in in vivo pharmacological studies. Eur J Pharmacol 1994; 265: 151– 158. 71 Wettstein A, Spiegel R. Clinical trials with the cholinergic drug RS-86 in Alzheimer's disease (AD) and senile dementia of the Alzheimer type (SDAT). Psychopharmacology 1984; 84: 572– 573. 72 Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR. Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science 1982; 215: 1237– 1239. 73 Williams S, Johnston D. Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science 1988; 242: 84– 87. 74 Yamamoto T, Ohno M, Kitajima I, Yatsugi S, Ueki S. Ameliorative effects of the centrally active cholinesterase inhibitor, NIK-247, on impairment of working memory in rats. Physiol Behav 1993; 53: 5– 10. 75 Yamanishi Y, Ogura H, Kosasa T, Araki S, Sawa Y, Yamatsu K. Inhibitory action of E2020, a novel acetylcholinesterase inhibitor, on cholinesterase: comparison with other inhibitors. In: T Nagatsu. et al., eds. Basic, clinical, and therapeutic aspects of Alzheimer's and Parkinson's diseases. Volume 2. New York : Plenum Press, 1990: 409– 413. 76 Yoshida S, Nabeshima T, Kinbara K, Kameyama T. Effects of NIK-247 on CO-induced impairment of passive avoidance in mice. Eur J Pharmacol 1992; 214: 247– 252. 77 Yoshida S and Suzuki N. Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur J Pharmacol 1993; 250: 117– 124. Citing Literature Volume4, Issue3September 1998Pages 247-259 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX