The Role of Sinoaortic and Cardiopulmonary Baroreceptor Reflex Arcs in Nociception and Stress‐Induced Analgesia a
1986; Wiley; Volume: 467; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1986.tb14642.x
ISSN1749-6632
AutoresAlan Randich, William Maixner,
Tópico(s)Nicotinic Acetylcholine Receptors Study
ResumoAnnals of the New York Academy of SciencesVolume 467, Issue 1 p. 385-401 The Role of Sinoaortic and Cardiopulmonary Baroreceptor Reflex Arcs in Nociception and Stress-Induced Analgesiaa ALAN RANDICH, ALAN RANDICH Department of Psychology The University of Iowa Iowa City, Iowa 52242Search for more papers by this authorWILLIAM MAIXNER, WILLIAM MAIXNER Neurobiology and Anesthesiology Branch The National Institute of Dental Research National Institutes of Health Bethesda, Maryland 20205Search for more papers by this author ALAN RANDICH, ALAN RANDICH Department of Psychology The University of Iowa Iowa City, Iowa 52242Search for more papers by this authorWILLIAM MAIXNER, WILLIAM MAIXNER Neurobiology and Anesthesiology Branch The National Institute of Dental Research National Institutes of Health Bethesda, Maryland 20205Search for more papers by this author First published: June 1986 https://doi.org/10.1111/j.1749-6632.1986.tb14642.xCitations: 71 a Supported by a grant from the National Institutes of Health (NS 18341) and a research fellowship from the Alfred P. Sloan Foundation to A. Randich. A. Randich is an Alfred P. Sloan Research Fellow. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Abboud, F. M. & M. D. Thames 1984. Interactions of cardiovascular reflexes in circulatory control. In Handbook of Physiology-The Cardiovascular System III. J. T. Shepherd & F. M. Abboud, Eds.: 675–753. American Physiological Society. Bethesda , MD . 2 Bishop, V. S., A. Malliani & P. Thoren 1984. Cardiac mechanoreceptors. In Handbook of Physiology-The Cardiovascular System III. J. T. Shepherd & F. M. Abboud, Eds.: 497–555. American Physiological Society. Bethesda , MD . 3 Bonica, J. J. 1979. The need of a taxonomy. Pain 6: 247–252. 4 Randich, A. & W. Maixner 1984. Interactions between cardiovascular and pain regulatory systems. Neurosci. Biobehav. Rev. 8: 343–367. 5 Bartorelli, C., E. Bizzi, A. Libretti & A. Zanchetti 1968. Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomie activity and sham rage behavior. Arch. Ital. Biol. 98: 308–326. 6 Koch, E. 1932. Die irradiation der pressoreceptorischen kreislaufreflexe. Klin. Wochenschr. 2: 225–227. 7 Viveros, O. H. & S. P. Wilson 1983. The adrenal chromaffm cell as a model to study the co-secretion of enkephalins and catecholamines. J. Autonom. Nerv. Syst. 7: 41–58. 8 Viveros, O. H., E. J. Diliberto, E. Hazum & K-J. Chang 1979. Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines. Mol. Pharmacol. 16: 1101–1108. 9 Livett, B. G., D. M. Dean, L. G. Whelan, S. Udenfriend & J. Rossier 1981. Corelease of enkephalin and catecholamines from culture adrenal chromaffm cells. Nature 289: 317–319. 10 Govoni, S., I. Hanbauer, T. D. Hexum, H.-Y. T. Yang, G. D. Kelly & E. Costa 1981. In vivo characterization of the mechanisms that secrete enkephalin-like peptides stored in the dog adrenal medulla. Neuropharmacology 20: 639–645. 11 Lewis, J. W., M. G. Tordoff, J. E. Sherman & J. C. Liebeskind 1982. Adrenal medullary enkephalin-like peptides may mediate opioid stress-induced analgesia. Science 217: 557–559. 12 Pardridge, W. M. & L. J. Mietus 1981. Enkephalin and blood-brain barrier: Studies of binding and degradation in isolated brain microvessels. Endocrinology 109: 1138–1143. 13 Rapoport, S. I., W. A. Klee, K. D. Pettigrew & K. Ohno 1980. Entry of opioid peptides into the central nervous system. Science 207: 84–86. 14 Manwaring, D. & K. Mullane 1984. Disappearance of enkephalins in the isolated perfused rat lung. Life Sci. 35: 1787–1794. 15 Willette, R. N. & H. N. Sapru 1982. Pulmonary opiate receptor activation evokes a cardiorespiratory reflex. Eur. J. Pharmacol. 78: 61–70. 16 Willette, R. N. & H. N. Sapru 1982. Peripheral versus central cardiorespiratory effects of morphine. Neuropharmacology 21: 1019–1026. 17 Randich, A & W. Maixner 1984. [d-Ala2]-methionine enkephalinamide reflexively induces antinociception by activating vagal afferents Pharmacol. Biochem. Behav. 21: 441–448. 18 Sandkuhler, J. & G. F. Gebhart 1984. Characterization of inhibition of spinal nociceptive reflex by stimulation medially and laterally in the midbrain and medulla in the pentobarbital-anesthetized rat. Brain Res. 305: 67–76. 19 Sandkuhler, J. & G. F. Gebhart 1984. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbitalanesthetized rat. Brain Res. 305: 77–87. 20 Randich, A. & C. Hartunian 1983. Activation of the sinoaortic baroreceptor reflex arc induces analgesia: Interactions between cardiovascular and endogenous pain inhibition systems. Physiol. Psychol. 11: 214–220. 21 Fellows, E. J. & G. E. Ullyot 1951. Analgesics: Aralkylamines. In Medicinal Chemistry. C. M. Suter, Ed.: 390–396. Wiley & Sons. New York . 22 Zamir, N. & E. Shuber 1980. Altered pain perception in hypertensive humans. Brain Res. 201: 471–474. 23 Zamir, N. & M. Segal 1979. Hypertension-induced analgesia: Changes in pain sensitivity in experimental hypertensive rats. Brain Res. 160: 170–173. 24 Randich, A & W. Maixner 1981. Acquisition of conditioned suppression and responsivity to thermal stimulation in spontaneously hypertensive, renal hypertensive, and normotensive rats. Physiol. Behav. 27: 585–590. 25 R. M. Berne & M. N. Levy, Eds. 1981. Cardiovascular Physiology. 4th edit. C. V. Mosby Company. St Louis , MO . 26 Imaizumi, T., S. D. Brunk, B. N. Gupta & M. D. Thames 1984. Central effect of intravenous phenylephrine on baroreflex control of renal nerves. Hypertension 6: 906–914. 27 Maixner, W. & A. Randich 1984. Role of the right vagal nerve trunk in antinociception. Brain Res. 298: 374–377. 28 Randich, A., T. A Simpson, P. A. Hanger & R. L. Fisher 1984. Activation of vagal afferents by veratrine induces antinociception. Physiol. Psychol. 12: 293–301. 29 Folkow, B. 1982. Physiological aspects of primary hypertension. Physiol. Rev. 62: 347–504. 30 Lovik, T. A. 1985. Venterolateral medullary lesions block the antinociceptive and cardiovascular responses elicited by stimulating the dorsal periaqueductal grey matter in rats. Pain 21: 241–252. 31 Thoren, P. 1979. Role of cardiac vagal C-fibers in cardiovascular control. Rev. Physiol. Biochem. Pharmacol. 86: 1–94. Citing Literature Volume467, Issue1Stress‐Induced AnalgesiaJune 1986Pages 385-401 ReferencesRelatedInformation
Referência(s)