Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC 5 in MDS and AML with deletion 5q
2012; Wiley; Volume: 90; Issue: 3 Linguagem: Inglês
10.1111/ejh.12045
ISSN1600-0609
AutoresMarianne Bach Treppendahl, Lars Möllgård, Eva Hellström‐Lindberg, Paul A. Cloos, Kirsten Grønbæk,
Tópico(s)Ubiquitin and proteasome pathways
ResumoEuropean Journal of HaematologyVolume 90, Issue 3 p. 259-260 Letter to the Editor Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC5 in MDS and AML with deletion 5q Marianne B. Treppendahl, Corresponding Author Marianne B. Treppendahl Department of Hematology, Rigshospitalet, Copenhagen, DenmarkCorrespondence Marianne B Treppendahl, Department of Hematology, Blegdamsvej 9, Rigshospitalet, Copenhagen, Denmark. Tel.: 3545 9554; Fax: 3545 4295; e-mail: [email protected]Search for more papers by this authorLars Möllgård, Lars Möllgård Karolinska University Hospital and Karolinska Institute, Stockholm, SwedenSearch for more papers by this authorEva Hellström-Lindberg, Eva Hellström-Lindberg Karolinska University Hospital and Karolinska Institute, Stockholm, SwedenSearch for more papers by this authorPaul Cloos, Paul Cloos Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DenmarkSearch for more papers by this authorKirsten Grønbæk, Kirsten Grønbæk Department of Hematology, Rigshospitalet, Copenhagen, DenmarkSearch for more papers by this author Marianne B. Treppendahl, Corresponding Author Marianne B. Treppendahl Department of Hematology, Rigshospitalet, Copenhagen, DenmarkCorrespondence Marianne B Treppendahl, Department of Hematology, Blegdamsvej 9, Rigshospitalet, Copenhagen, Denmark. Tel.: 3545 9554; Fax: 3545 4295; e-mail: [email protected]Search for more papers by this authorLars Möllgård, Lars Möllgård Karolinska University Hospital and Karolinska Institute, Stockholm, SwedenSearch for more papers by this authorEva Hellström-Lindberg, Eva Hellström-Lindberg Karolinska University Hospital and Karolinska Institute, Stockholm, SwedenSearch for more papers by this authorPaul Cloos, Paul Cloos Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DenmarkSearch for more papers by this authorKirsten Grønbæk, Kirsten Grønbæk Department of Hematology, Rigshospitalet, Copenhagen, DenmarkSearch for more papers by this author First published: 27 November 2012 https://doi.org/10.1111/ejh.12045Citations: 14Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. References 1Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612. 10.1038/nrc3343 CASPubMedWeb of Science®Google Scholar 2Pendino F, Nguyen E, Jonassen I, Dysvik B, Azouz A, Lanotte M, Ségal-Bendirdjian E, Lillehaug JR. Functional involvement of RINF, retinoid-inducible nuclear factor (CXXC5), in normal and tumoral human myelopoiesis. Blood 2009; 113: 3172–81. 10.1182/blood-2008-07-170035 CASPubMedWeb of Science®Google Scholar 3Pradhan M, Estève P-O, Chin HG, Samaranayke M, Kim G-D, Pradhan S. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 2008; 47: 10000–9. 10.1021/bi8011725 CASPubMedWeb of Science®Google Scholar 4Birke M, Schreiner S, García-Cuéllar M-P, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–65. 10.1093/nar/30.4.958 CASPubMedWeb of Science®Google Scholar 5Jørgensen HF, Ben-Porath I, Bird AP. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol 2004; 24: 3387–95. 10.1128/MCB.24.8.3387-3395.2004 CASPubMedWeb of Science®Google Scholar 6Lee JH, Voo KS, Skalnik DG. Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol Chem 2001; 276: 44669–76. 10.1074/jbc.M107179200 CASPubMedWeb of Science®Google Scholar 7Xu Y, Wu F, Tan L, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 2011; 42: 451–64. 10.1016/j.molcel.2011.04.005 CASPubMedWeb of Science®Google Scholar 8Andersson T, Södersten E, Duckworth JK, Cascante A, Fritz N, Sacchetti P, Cervenka I, Bryja V, Hermanson O. CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells. J Biol Chem 2009; 284: 3672–81. 10.1074/jbc.M808119200 CASPubMedWeb of Science®Google Scholar 9Kim MS, Yoon SK, Bollig F, et al. A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway. J Biol Chem 2010; 285: 14585–93. 10.1074/jbc.M109.094334 CASPubMedWeb of Science®Google Scholar 10Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–3. 10.1126/science.1186624 CASPubMedWeb of Science®Google Scholar 11Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H, Le TT, Westbrook CA. Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 2000; 95: 2372–7. 10.1182/blood.V95.7.2372 CASPubMedWeb of Science®Google Scholar 12Liu TX, Becker MW, Jelinek J, Wu W-S, Deng M, Mikhalkevich N, Hsu K, Bloomfield CD, Stone RM, DeAngelo DJ. a, Issa J-P, Clarke MF, Look a T. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 2007; 13: 78–83. 10.1038/nm1512 CASPubMedWeb of Science®Google Scholar 13Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–9. 10.1038/nature06494 CASPubMedWeb of Science®Google Scholar 14Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58. 10.1038/nm.2054 CASPubMedWeb of Science®Google Scholar 15Pellagatti A, Jädersten M, Forsblom A-M, et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci USA 2007; 104: 11406–11. 10.1073/pnas.0610477104 CASPubMedWeb of Science®Google Scholar 16Wang J, Fernald AA, Anastasi J, Le Beau MM, Qian Z. Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood 2010; 115: 3481–8. 10.1182/blood-2009-11-251835 CASPubMedWeb of Science®Google Scholar 17Joslin JM, Fernald AA, Tennant TR, Davis EM, Kogan SC, Anastasi J, Crispino JD, Le Beau MM. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 2007; 110: 719–26. 10.1182/blood-2007-01-068809 CASPubMedWeb of Science®Google Scholar Citing Literature Volume90, Issue3March 2013Pages 259-260 ReferencesRelatedInformation
Referência(s)