
Limb joints kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia)
2005; Wiley; Volume: 266; Issue: 3 Linguagem: Inglês
10.1017/s0952836905006928
ISSN1469-7998
AutoresOscar Rocha Barbosa, M. F. C. Loguercio, Sabine Renous, Jean‐Pierre Gasc,
Tópico(s)Robotic Locomotion and Control
ResumoJournal of ZoologyVolume 266, Issue 3 p. 293-305 Limb joints kinematics and their relation to increasing speed in the guinea pig Cavia porcellus (Mammalia: Rodentia) Oscar Rocha-Barbosa, Corresponding Author Oscar Rocha-Barbosa Laboratório de Zoologia de Vertebrados (Tetrapoda), Departamento de Zoologia. PHLC, sl. 513b/515b – IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã. 20550-013, Rio de Janeiro, RJ, BrasilAll correspondence to: O. Rocha-Barbosa. E-mail: [email protected]Search for more papers by this authorMariana Fiuza de Castro Loguercio, Mariana Fiuza de Castro Loguercio Laboratório de Zoologia de Vertebrados (Tetrapoda), Departamento de Zoologia. PHLC, sl. 513b/515b – IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã. 20550-013, Rio de Janeiro, RJ, BrasilSearch for more papers by this authorSabine Renous, Sabine Renous UMR 8570 CNRS/MNHN, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 Rue Buffon, F-75005 Paris, FranceSearch for more papers by this authorJean-Pierre Gasc, Jean-Pierre Gasc UMR 8570 CNRS/MNHN, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 Rue Buffon, F-75005 Paris, FranceSearch for more papers by this author Oscar Rocha-Barbosa, Corresponding Author Oscar Rocha-Barbosa Laboratório de Zoologia de Vertebrados (Tetrapoda), Departamento de Zoologia. PHLC, sl. 513b/515b – IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã. 20550-013, Rio de Janeiro, RJ, BrasilAll correspondence to: O. Rocha-Barbosa. E-mail: [email protected]Search for more papers by this authorMariana Fiuza de Castro Loguercio, Mariana Fiuza de Castro Loguercio Laboratório de Zoologia de Vertebrados (Tetrapoda), Departamento de Zoologia. PHLC, sl. 513b/515b – IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã. 20550-013, Rio de Janeiro, RJ, BrasilSearch for more papers by this authorSabine Renous, Sabine Renous UMR 8570 CNRS/MNHN, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 Rue Buffon, F-75005 Paris, FranceSearch for more papers by this authorJean-Pierre Gasc, Jean-Pierre Gasc UMR 8570 CNRS/MNHN, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, 55 Rue Buffon, F-75005 Paris, FranceSearch for more papers by this author First published: 28 February 2006 https://doi.org/10.1017/S0952836905006928Citations: 20AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The kinematics of each joint of the guinea pig Cavia porcellus were studied during the locomotor cycle at increasing speed by high-speed cinefluorography. The main objective was to reveal the functional specific features of these structural elements in each dynamic phase of the cycle and also which limb joints are important during the increase of animal speed. Most of the analysed angles in C. porcellus were affected as the speed increased, both in trot and gallop. However, only a few of them were correlated with speed. There were also differences with respect to symmetrical or asymmetrical gaits. Both pairs of limbs responded differently to the increase of speed; while the forelimb joints modified the duration of their action (frequency) more than the amplitude (stride length), the hindlimbs acted inversely. The movements of the joints during the stance phase changed dramatically with speed, particularly in the hindlimb. At knee level, the flexion amplitude increases to maintain the stiffness of the leg spring, a principle previously discussed as essential for the running process. In the swing phase, inertial effects are the main constraints and, as in the stance phase, the knee joint in the swing phase is correlated with speed both during trot and gallop, confirming the major importance of this joint to increasing speed. References Alexander, R. McN. (1988). Elastic mechanisms in animal movement. Cambridge : Cambridge University Press. Alexander, R. McN. (1995). Leg design and jumping technique for humans, other vertebrates and insects. Philos. Trans. R. Soc. Lond. B biol. Sci. 347: 235–248. Alexander, R. McN. (2002). Tendon elasticity and muscle function. Comp. Biochem. Physiol. A comp. Physiol. 133: 1001–1011. Alexander, R. McN. & Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. (Lond.) 201: 135–152. Biewener, A. A. (1989). Scaling body support in mammals: limb posture and muscle mechanics. Science 245: 45–48. Biknevicius, A. R. (1993). Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. J. Mammal. 74(1): 95–107. Bryant, J. D, Bennett, M. B., Brust, J. & Alexander, R McN. (1987). Forces exerted on the ground by galloping dogs (Canis familiaris). J. Zool. (Lond.) 213: 193–203. Cano, M. R., Vivo, J., Miró, F., Morales, J. L. & Galisteo, A. M. (2001). Kinematic characteristics of Andalusian, Arabian and Anglo-Arabian horses: a comparative study. Res. Vet. Sci. 71: 147–153. Cavagna, G. A., Saibene, F. P. & Margaria, R. (1964). Mechanical work in running. J. appl. Physiol. 19: 249–256. Farley, C. T., Glasheen, J. & McMahon, T. A. (1993). Running springs: speed and animal size. J. exp. Biol. 185: 71–86. Fischer, M. S. (1994). Crouched posture and high fulcrum, a principle in the locomotion of small mammals: the example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea). J. Hum. Evol. 26: 501–524. Fischer, M. S., Schilling, N., Schmidt, M., Haarhaus, D. & Witte, H. (2002). Basic limb kinematics of small therian mammals. J. exp. Biol. 205: 1315–1338. Fish, F. E. & Baudinette, R. V. (1999). Energetics of locomotion by the Australian water rat (Hydromys chrysogaster): a comparison of swimming and running in a semi-aquatic mammal. J. exp. Biol. 202: 353–363. Galisteo, A. M., Cano, M. R., Morales, J. L., Vivo, J. & Miró, F. (1998). The influence of speed and height at the withers in the kinematics of sound horses at the hand-led trot. Vet. Res. Commun. 22: 415–423. Gambaryan, P. P. (1974). Adaptation to running in the Rodentia and Marsupialia. In How mammals run – anatomical adaptations: 276–327. P. P. Gambaryan (Ed.) New York : Wiley. Gasc, J. P. (1990). Utilisation de la radiocinématographie dans l'étude des mouvements des vertébrés. L'image et la science, 115e. Cong. nat. Soc. savantes, 129–132. Gasc, J. P. (1993). Asymmetrical gait of the Saharian rodent Meriones shawi shawi (Duvernoy, 1842) (Rodentia, Mammalia): a high-speed cineradiographic analysis. Can. J. Zool. 71: 790–798. Goslow, G. E., Jr, Reinking, R. M. & Stuart, D. G. (1973). The cat step cycle: hindlimb joint angles and muscle lengths during a restrained locomotion. J. Morphol. 141: 1–42. Goslow, G. E., Jr & Van de Graaff, K. M. (1982). Hindlimb joint angle changes and actions of the primary ankle extensor muscles during posture and locomotion in the striped skunk (Mephitis mephitis). J. Zool. (Lond.) 197: 405–419. Greene, P. R. & McMahon, T. A. (1979). Reflex stiffness of man's anti-gravity muscles during kneebends while carrying extra weights. J. Biomech. 12: 881–891. Grillner, S. (1975). Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55: 247–304. Jenkins, F. A., Jr (1971). Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other noncursorial mammals. J. Zool. (Lond.) 165: 303–315. Jenkins, F. A., Jr (1974). The movement of the shoulder in claviculate and aclaviculate mammals. J. Morphol. 144: 71–84. Jenkins, F. A., Jr & Weijs, W. A. (1979). The functional anatomy in the Virginia opossum (Didlephis virginiana). J. Zool. (Lond.) 188: 379–410. Kuznetsov, A. N. (1985). Comparative functional analysis of the fore and hindlimb in mammals. Zool. Zh. 64(12): 1862–1867.(In Russian.). McMahon, T. A. & Cheng, G. C. (1990). The mechanics of running: how does stiffness couple with speed J. Biomech. 23(Suppl. 1): 65–78. Nowak, R. M. (1991). Walker's mammals of the World. Baltimore , MD : Johns Hopkins University Press. Orsal, D. (1987). Analyse des coordinations intra et inter-appendiculaires au cours de l'activité locomotrice chez le chat thalamique. PhD thesis, Paris University VI. Pennycuick, C. J. (1975). On the running of the gnu (Connochaetes taurinus) and other animals. J. exp. Biol. 63: 775–799. Philippson, M. (1905). L'autonomie et la centralisation dans le système nerveux des animaux. Trav. Lab. Physiol. Solvay (Bruxelles) 7: 1–208. Pike, A. V. L. & Alexander, R. McN. (2002). The relationship between limb-segment and joints kinematics for the hindlimbs of quadrupedal animals. J. Zool. (Lond.) 258(4): 427–433. Reynolds, T. R. (1985). Mechanics of increased support of weight by the hindlimbs in primates. Am. J. Phys. Anthropol. 67: 335–349. Rocha-Barbosa, O. (1997). Analyse morpho-fonctionnelle des convergences de l'appareil locomoteur de grands Rongeurs Caviomorphes d'Amérique du Sud et de petits Artiodactyles d'Afrique et d'Asie. I & II. PhD thesis, Muséum National d'Histoire Naturelle de Paris (partially published). Rocha-Barbosa, O., Renous, S. & Gasc, J. P. (1996a). Adaptation à la course chez le cobaye Cavia porcellus (Mammifère, Rongeur, Caviomorphe). Bull. Soc. Zool. Fr. 121(1): 115–117. Rocha-Barbosa, O., Renous, S. & Gasc, J. P. (1996b). Comparison of the fore and hindlimbs kinematics in the symmetrical and asymmetrical gaits of a caviomorph rodent, the domestic guinea pig, Cavia porcellus (Linné, 1758) (Rodentia: Caviidae). Ann. Sci. Nat. (Zool. Biol. Anim.) 17(4): 149–165. Rocha-Barbosa, O., Youlatos, D., Gasc, J. P. & Renous, S. (2002). The clavicular region of some cursorial Cavioidea (Rodentia: Mammalia). Mammalia 66(3): 413–421. Russel, A. P. & Bels, V. (2001). Biomechanics and kinematics of limb-based locomotion in lizards: review, synthesis and prospectus. Comp. Biochem. Physiol. A biochem. Physiol. 131: 89–112. van Weeren, P. R., Van den Bogert, A. J., Back, W., Bruin, G. & Barneveld, A. (1993). Kinematics of the standard bred trotter measured at 6, 7, 8, and 9 m/s on a treadmill, before and after 5 months of prerace training. Acta Anat. 149: 154–161. Witte, H., Biltzinger, J., Hackert, R., Schilling, N., Schimidt, M., Reich, C. & Fischer, M. S. (2002). Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J. exp. Biol. 205: 1339–1353. Yamanobe, A., Hiraga, A. & Kubo, K. (1992). Relationship between stride frequency, stride length, step length and velocity with asymmetric gaits in the thoroughbred horse. Jap. J. Equine Sci. 3: 143–148. Citing Literature Volume266, Issue3July 2005Pages 293-305 ReferencesRelatedInformation
Referência(s)