Artigo Revisado por pares

Classical and quasi-classical trajectory calculations of isotope exchange and ozone formation proceeding through O+O2 collision complexes

2002; American Institute of Physics; Volume: 117; Issue: 16 Linguagem: Inglês

10.1063/1.1508373

ISSN

1520-9032

Autores

Thomas A. Baker, Gregory I. Gellene,

Tópico(s)

Spectroscopy and Laser Applications

Resumo

The isotope exchange reaction, and the three-body ozone formation rate proceeding through an ozone complex, have been studied by classical and quasi-classical trajectory techniques. The exchange rate studies indicate that the rate of this reaction is dominantly sensitive to the O+O2 entrance channel characteristics of the potential energy surface. A detailed consideration of the dynamics of the intermediate ozone complex reveals three important classes. In one class, the complex adopts an ozonelike geometry, largely undergoing asymmetric stretchinglike motion until it dissociates. In a second class, the oxygen atom and molecule never visit the ozonelike geometry but rather remain separated by relatively large distances trapped near the angular momentum barrier in the entrance channel of a pseudo-effective potential. These complexes, which cannot undergo exchange, are, nevertheless, found to contribute significantly to ozone formation at high density of the third body suggesting that the association of the high-density effective formation rate constant with twice the exchange rate may not be valid. The third class can be considered a hybrid of the first two, spending some time as an ozonelike complex and some time as a large atom-diatomic complex. This third class provides a mechanism for rearranging atom locations in the complex (e.g., end and middle position swapping) and, consequently, would not be well accounted for by statistical treatments of the ozone complex based on a single ozonelike reference geometry. In general, the survival time distributions of the complexes are found to be nonexponential. However, when the detailed survival time distributions are coupled with a Lennard-Jones collision model for the stabilization step, the experimental ozone formation rate can be adequately modeled over a broad range of temperature and density.

Referência(s)
Altmetric
PlumX