Organic Matter Dynamics in Sycamore Creek, a Desert Stream in Arizona, USA

1997; University of Chicago Press; Volume: 16; Issue: 1 Linguagem: Inglês

10.2307/1468238

ISSN

1937-237X

Autores

Jeremy B. Jones, J. D. Schade, Stuart G. Fisher, Nancy B. Grimm,

Tópico(s)

Freshwater macroinvertebrate diversity and ecology

Resumo

Previous articleNext article No AccessStream Organic Matter BudgetsOrganic Matter Dynamics in Sycamore Creek, a Desert Stream in Arizona, USAJeremy B. Jones, Jr., John D. Schade, Stuart G. Fisher, and Nancy B. GrimmJeremy B. Jones, Jr. Search for more articles by this author , John D. Schade Search for more articles by this author , Stuart G. Fisher Search for more articles by this author , and Nancy B. Grimm Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 16, Number 1Mar., 1997 Article DOIhttps://doi.org/10.2307/1468238 Views: 5Total views on this site Citations: 28Citations are reported from Crossref Journal History This article was published in the Journal of the North American Benthological Society (1986-2011), which is continued by Freshwater Science (2012-present). Copyright 1997 The North American Benthological SocietyPDF download Crossref reports the following articles citing this article:Kayla L. Glossner, Kathleen A. Lohse, Alison P. Appling, Zane K. Cram, Erin Murray, Sarah E. Godsey, Steve Van Vactor, Emma P. McCorkle, Mark S. Seyfried, Fredrick B. Pierson Long‐term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory, Hydrological Processes 36, no.22 (Feb 2022).https://doi.org/10.1002/hyp.14484Eric Bollinger, Jochen P. Zubrod, Marco Konschak, Lenz Sulzer, Jacob Schnurr, Verena C. Schreiner, Ralf Schulz, Mirco Bundschuh As above, so below? Effects of fungicides on microbial organic matter decomposition are stronger in the hyporheic than in the benthic zone, Limnology and Oceanography 67, no.11 (Nov 2021): 39–52.https://doi.org/10.1002/lno.11973J. David Allan, Maria M. Castillo, Krista A. Capps Carbon Dynamics and Stream Ecosystem Metabolism, (Mar 2021): 421–452.https://doi.org/10.1007/978-3-030-61286-3_14Arturo Elosegi, Jesús Pozo Litter Input, (Jul 2020): 3–12.https://doi.org/10.1007/978-3-030-30515-4_1Jesús Pozo, Jon Molinero Coarse Particulate Organic Matter Budgets, (Jul 2020): 79–88.https://doi.org/10.1007/978-3-030-30515-4_10Jesús Pozo, Arturo Elosegi Coarse Benthic Organic Matter, (Jul 2020): 29–35.https://doi.org/10.1007/978-3-030-30515-4_4William H. Schlesinger, Emily S. Bernhardt Inland Waters, (Jan 2020): 293–360.https://doi.org/10.1016/B978-0-12-814608-8.00008-6 References, (Jan 2020): 531–734.https://doi.org/10.1016/B978-0-12-814608-8.09992-8Julia L. Wise, David J. Van Horn, Aaron F. Diefendorf, Peter J. Regier, Thomas V. Lowell, Clifford N. Dahm Dissolved organic matter dynamics in storm water runoff in a dryland urban region, Journal of Arid Environments 165 (Jun 2019): 55–63.https://doi.org/10.1016/j.jaridenv.2019.03.003Alison P. Appling, Jordan S. Read, Luke A. Winslow, Maite Arroita, Emily S. Bernhardt, Natalie A. Griffiths, Robert O. Hall, Judson W. Harvey, James B. Heffernan, Emily H. Stanley, Edward G. Stets, Charles B. Yackulic The metabolic regimes of 356 rivers in the United States, Scientific Data 5, no.11 (Dec 2018).https://doi.org/10.1038/sdata.2018.292A. J. Hobson, B. T. Neilson, N. von Stackelberg, M. Shupryt, J. Ostermiller, G. Pelletier, S. C. Chapra Development of a Minimalistic Data Collection Strategy for QUAL2Kw, Journal of Water Resources Planning and Management 141, no.88 (Aug 2015).https://doi.org/10.1061/(ASCE)WR.1943-5452.0000488Sudeep D. Ghate, Kandikere R. Sridhar Diversity of aquatic hyphomycetes in streambed sediments of temporary streamlets of Southwest India, Fungal Ecology 14 (Apr 2015): 53–61.https://doi.org/10.1016/j.funeco.2014.11.005Alexander D. Huryn, Jonathan P. Benstead, Stephanie M. Parker Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream, Ecology 95, no.1010 (Oct 2014): 2826–2839.https://doi.org/10.1890/13-1963.1Robert S. Stelzer, J. Thad Scott, Lynn A. Bartsch, Thomas. B. Parr Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment, Biogeochemistry 119, no.1-31-3 (Mar 2014): 387–402.https://doi.org/10.1007/s10533-014-9975-0 References, (Jan 2013): 491–664.https://doi.org/10.1016/B978-0-12-385874-0.09983-0Naga Mangala Sudheep, Kandikere Ramaiah Sridhar Aquatic hyphomycetes in hyporheic freshwater habitats of southwest India, Limnologica 42, no.22 (May 2012): 87–94.https://doi.org/10.1016/j.limno.2012.02.001Natalie A. Griffiths, Jennifer L. Tank, Todd V. Royer, Thomas J. Warrner, Therese C. Frauendorf, Emma J. Rosi-Marshall, Matt R. Whiles Temporal variation in organic carbon spiraling in Midwestern agricultural streams, Biogeochemistry 108, no.1-31-3 (Mar 2011): 149–169.https://doi.org/10.1007/s10533-011-9585-zTheodore A. Kennedy, Barbara E. Ralston Regulation leads to increases in riparian vegetation, but not direct allochthonous inputs, along the Colorado River in Grand Canyon, Arizona, River Research and Applications 28, no.11 (Jul 2010): 2–12.https://doi.org/10.1002/rra.1431F. Stuart Chapin, Pamela A. Matson, Peter M. Vitousek Decomposition and Ecosystem Carbon Budgets, (Aug 2011): 183–228.https://doi.org/10.1007/978-1-4419-9504-9_7JULIEN CORNUT, ARNAUD ELGER, DIDIER LAMBRIGOT, PIERRE MARMONIER, ERIC CHAUVET Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams, Freshwater Biology 55, no.1212 (Aug 2010): 2541–2556.https://doi.org/10.1111/j.1365-2427.2010.02483.xElizabeth M. Hagen, Matthew E. McTammany, Jackson R. Webster, Ernest F. Benfield Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient, Hydrobiologia 655, no.11 (Aug 2010): 61–77.https://doi.org/10.1007/s10750-010-0404-7D. Mark Powell Dryland Rivers: Processes and Forms, (Jan 2009): 333–373.https://doi.org/10.1007/978-1-4020-5719-9_12Paul Joyce1 and Roger S. Wotton2 Shredder fecal pellets as stores of allochthonous organic matter in streams, Journal of the North American Benthological Society 27, no.33 (Jul 2015): 521–528.https://doi.org/10.1899/07-102.1Michele A. Burford, Andrew J. Cook, Christine S. Fellows, Stephen R. Balcombe, Stuart E. Bunn Sources of carbon fuelling production in an arid floodplain river, Marine and Freshwater Research 59, no.33 (Jan 2008): 224.https://doi.org/10.1071/MF07159Paul D. Brooks, Michelle M. Lemon Spatial variability in dissolved organic matter and inorganic nitrogen concentrations in a semiarid stream, San Pedro River, Arizona, Journal of Geophysical Research: Biogeosciences 112, no.G3G3 (Jun 2007): n/a–n/a.https://doi.org/10.1029/2006JG000262Stuart G. Fisher, Ryan A. Sponseller, James B. Heffernan HORIZONS IN STREAM BIOGEOCHEMISTRY: FLOWPATHS TO PROGRESS, Ecology 85, no.99 (Sep 2004): 2369–2379.https://doi.org/10.1890/03-0244Rainer Zah, Peter Burgherr, Stefano M. Bernasconi, Urs Uehlinger Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream, Freshwater Biology 46, no.77 (Dec 2001): 871–882.https://doi.org/10.1046/j.1365-2427.2001.00720.xPeter J. Jacobson, Kathryn M. Jacobson, Paul L. Angermeier, Don S. Cherry Variation in material transport and water chemistry along a large ephemeral river in the Namib Desert, Freshwater Biology 44, no.33 (Jul 2000): 481–491.https://doi.org/10.1046/j.1365-2427.2000.00604.x

Referência(s)