Revisão Revisado por pares

The molecular basis for paroxysmal nocturnal hemoglobinuria

1993; Wiley; Volume: 33; Issue: 10 Linguagem: Inglês

10.1046/j.1537-2995.1993.331094054626.x

ISSN

1537-2995

Autores

R. Yomtovian, G. M. Shazzad Hossain Prince, M. Edward Medof,

Tópico(s)

Renal Diseases and Glomerulopathies

Resumo

TransfusionVolume 33, Issue 10 p. 852-873 The molecular basis for paroxysmal nocturnal hemoglobinuria R. Yomtovian, R. Yomtovian Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. Roslyn Yomtovian, MD, Assistant Professor, Institute of Pathology; and Director, Blood Bank-Transfusion Medicine Services, University Hospitals of Cleveland, Cleveland, OH.Search for more papers by this authorG.M. Prince, G.M. Prince Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. Gregory M. Prince, MD, Resident, Institute of Pathology.Search for more papers by this authorM.E. Medof, Corresponding Author M.E. Medof Professor Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. M. Edward Medof, MD, PhD, Professor, Department of MedicineInstitute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106.Search for more papers by this author R. Yomtovian, R. Yomtovian Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. Roslyn Yomtovian, MD, Assistant Professor, Institute of Pathology; and Director, Blood Bank-Transfusion Medicine Services, University Hospitals of Cleveland, Cleveland, OH.Search for more papers by this authorG.M. Prince, G.M. Prince Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. Gregory M. Prince, MD, Resident, Institute of Pathology.Search for more papers by this authorM.E. Medof, Corresponding Author M.E. Medof Professor Institute of Pathology, Case Western Reserve University, Cleveland, Ohio. M. Edward Medof, MD, PhD, Professor, Department of MedicineInstitute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106.Search for more papers by this author First published: October 1993 https://doi.org/10.1046/j.1537-2995.1993.331094054626.xCitations: 32 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Rotoli B, Luzzatto L. Paroxysmal nocturnal hemoglobinuria. Semin Hematol 1989; 26: 201–7. 2 Rosse WF, Parker CJ. Paroxysmal nocturnal haemoglobinuria. Clin Haematol 1985; 14: 105–25. 3 Sirchia G, Lewis SM. Paroxysmal nocturnal haemoglobinuria. Clin Haematol 1975; 4: 199–229. 4 Forman K, Sokol RJ, Hewitt S, Stamps BK. Paroxysmal nocturnal haemoglobinuria. A clinicopathological study of 26 cases. Acta Haematol 1984; 71: 217–26. 5 Bryant RM, Hall SE, Cole JS, Greenberg CS, Rosse WF. Marked sensitivity of paroxysmal nocturnal hemoglobinuria (PNH) platelets to thrombin: relationship to complement activation (abstract). Blood 1988; 72(Suppl 1): 317a. 6 Blasi F, Behrendt N, Cubellis MV, et al. The urokinase receptor and regulation of cell surface plasminogen activation. Cell Differ Dev 1990; 32: 247–53. 7 Craddock PR, Fehr J, Jacob HS. Complement-mediated granulocyte dysfunction in paroxysmal nocturnal hemoglobinuria. Blood 1976; 47: 931–9. 8 Vellenga E, Mulder NH, The TH. Immunological dysfunction in paroxysmal nocturnal haemoglobinuria. Clin Lab Haematol 1981; 3: 307–16. 9 Selvaraj P, Dustin ML, Silber R, Low MG, Springer TA. Deficiency of lymphocyte function-associated antigen 3 (LFA-3) in paroxysmal nocturnal hemoglobinuria. Functional correlates and evidence for a phosphatidylinositol membrane anchor. J Exp Med 1987; 166: 1011–25. 10 Dameshek W. Foreword and a proposal for considering paroxysmal nocturnal hemoglobinuria (PNH) as a "candidate" myeloproliferative disorder. Blood 1969; 33: 263–4. 11 Schubert J, Alvarado M, Uciechowski P, et al. Diagnosis of paroxysmal nocturnal haemoglobinuria using immunopheno-typing of peripheral blood cells. Br J Haematol 1991; 79: 487–92. 12 Zheng P, Liu EK, Chang CN. Clinical analysis of 169 cases of paroxysmal nocturnal hemoglobinuria (PNH) (abstract). Blood 1987; 70(Suppl 1): 117a. 13 Issaragrisil S, Piankijagum A, Chinprasertsuk S, Kruatrachue M. Growth of mixed erythroid-granulocytic colonies in culture derived from bone marrow of patients with paroxysmal nocturnal hemoglobinuria without addition of exogenous stimulator. Exp Hematol 1986; 14: 861–6. 14 Oni SB, Osunkoya BO, Luzzatto L. Paroxysmal nocturnal hemoglobinuria: evidence for monoclonal origin of abnormal red cells. Blood 1970; 36: 145–52. 15 Gull WW. A case of intermittent haematinuria. Guys Hosp Rep 1866; 13: 381–92. 16 Strübing P. Paroxysmal haemoglobinurie. Dtsch Med Wochenschr 1882; 8: 1–17. 17 Hijmans van den Bergh AA. Ictère hémolytique avec crises hémoglobinuriques. Fragilité globulaire. Revue de Médecine (Paris) 1911; 31: 63–9. 18 Ham TH. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria. Study of the mechanism of hemolysis in relation to acid-base equilibrium. N Engl J Med 1937; 217: 915–7. 19 Ham TH. Studies on destruction of red blood cells. I. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria: an investigation of the mechanism of hemolysis, with observations on five cases. Arch Intern Med 1939; 64: 1271–305. 20 Ham TH, Dingle JH. Studies on destruction of red blood cells. II. Chronic hemolytic anemia with paroxysmal nocturnal hemoglobinuria: certain immunological aspects of the hemolytic mechanism with special reference to serum complement. J Clin Invest 1939; 18: 657–72. 21 Rosse WF, Dacie JV. Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. I. The sensitivity of PNH red cells to lysis by complement and specific antibody. J Clin Invest 1966; 45: 736–48. 22 Rosse WF. The life-span of complement-sensitive and -insensitive red cells in paroxysmal nocturnal hemoglobinuria. Blood 1971; 37: 556–62. 23 Ross GD, Medof ME. Membrane complement receptors specific for bound fragments of C3. Adv Immunol 1985; 37: 217–67. 24 Law SK. The covalent binding reaction of C3 and C4. Ann N YAcad Sci 1983; 421: 246–58. 25 Medof ME. Decay-accelerating factor and the defect of paroxysmal nocturnal hemoglobinuria. In: ER Podack, ed. Cytolytic lymphocytes and complement; effectors of the immune system. Boca Raton, FL: CRC Press, 1988: 57–86. 26 Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984; 160: 1558–78. 27 Kinoshita T, Medof ME, Nussenzweig V. Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes. J Immunol 1986; 136: 3390–5. 28 Pangburn MK. Differences between the binding sites of the complement regulatory proteins DAF, CR1 and factor H on C3 convertases. J Immunol 1986; 136: 2216–21. 29 Fujita T, Inoue T, Ogawa K, Iida K, Tamura N. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med 1987; 166: 1221–8. 30 Mold C, Walter EI, Medof ME. The influence of membrane components on regulation of alternative pathway activation by decay-accelerating factor. J Immunol 1990; 145: 3836–41. 31 Sugita Y, Nakano Y, Tomita M. Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem (Tokyo) 1988; 104: 633–7. 32 Okada N, Harada R, Fujita T, Okada H. Monoclonal antibodies capable of causing hemolysis of neuraminidase-treated human erythrocytes by homologous complement. J Immunol 1989; 143: 2262–6. 33 Holguin MH, Fredrick LR, Bernshaw NJ, Wilcox LA, Parker CJ. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 1989; 84: 7–17. 34 Davies A, Simmons DL, Hale G, et al. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 1989; 170: 637–54. 35 Stefanova I, Hilgert H, Kristofova H, Brown R, Low MG, Horejsi V. Characterization of a broadly expressed human leucocyte surface antigen MEM-43 anchored in membrane through phosphatidylinositol. Mol Immunol 1989; 26: 153–61. 36 Whitlow MB, Iida K, Stefanova I, Bernard A, Nussenzweig V. H19, a surface membrane molecule involved in T-cell activation, inhibits channel formation by human complement. Cell Immunol 1990; 126: 176–84. 37 Blaas P, Berger B, Weber S, Peter HH, Hansch GM. Paroxysmal nocturnal hemoglobinuria. Enhanced stimulation of platelets by the terminal complement components is related to the lack of C8bp in the membrane. J Immunol 1988; 140: 3045–51. 38 Zalman LS, Wood LM, Frank MM, Muller-Eberhard HJ. Deficiency of the homologous restriction factor in paroxysmal nocturnal hemoglobinuria. J Exp Med 1987; 165: 572–7. 39 Kinoshita T, Medof ME, Silber R, Nussenzweig V. Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 1985; 162: 75–92. 40 Nicholson-Weller A, March JP, Rosen CE, Spicer DB, Austen KF. Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 1985; 65: 1237–44. 41 Taguchi R, Funahashi Y, Ikezawa H, Nakashima I. Analysis of PI (phosphatidylinositol)-anchoring antigens in a patient of paroxysmal nocturnal hemoglobinuria (PNH) reveals deficiency of 1F5 antigen (CD59), a new complement-regulatory factor. FEBS Lett 1990; 261: 142–6. 42 Ratnoff WD, Knez JJ, Prince GM, Okada H, Lachmann PJ, Medof ME. Structural properties of the glycoplasmanylinositol anchor phospholipid of the complement membrane attack complex inhibitor CD59. Clin Exp Immunol 1992; 87: 415–21. 43 Berger M, Medof ME. Increased expression of complement decay-accelerating factor during activation of human neutrophils. J Clin Invest 1987; 79: 214–20. 44 Asch AS, Kinoshita T, Jaffe EA, Nussenzweig V. Decay-accelerating factor is present on cultured human umbilical vein endothelial cells. J Exp Med 1986; 163: 221–6. 45 Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 1987; 165: 848–64. 46 Lass JH, Walter EI, Burris TE, et al. Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest Ophthalmol Vis Sci 1990; 31: 1136–48. 47 Packman CH, Rosenfeld SI, Jenkins DE Jr, Thiem PA, Leddy JP. Complement lysis of human erythrocytes: differing susceptibility of two types of paroxysmal nocturnal hemoglobinuria cells to C5b-9. J Clin Invest 1979; 64: 428–33. 48 Hu VW, Shin ML. Species-restricted target cell lysis by human complement: complement-lysed erythrocytes from hetero-logous and homologous species differ in their ratio of bound to inserted C9. J Immunol 1984; 133: 2133–7. 49 Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF. Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci USA 1983; 80: 5066–70. 50 Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A 1983; 80: 5430–4. 51 Okada N, Harada R, Taguchi R, Okada H. Complete deficiency of 20 KDa homologous restriction factor (HRF20) and restoration with purified HRF20. Biochem Biophys Res Commun 1989; 164: 468–73. 52 Medof ME, Kinoshita T, Silber R, Nussenzweig V. Amelioration of lytic abnormalities of paroxysmal nocturnal hemoglobinuria with decay-accelerating factor. Proc Natl Acad Sci U S A 1985; 82: 2980–4. 53 Rollins SA, Sims PJ. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol 1990; 144: 3478–83. 54 Medof ME, Gottlieb A, Kinoshita T, et al. Relationship between decay accelerating factor deficiency, diminished acetylcholinesterase activity, and defective terminal complement pathway restriction in paroxysmal nocturnal hemoglobinuria erythrocytes. J Clin Invest 1987; 80: 165–74. 55 Holguin MH, Wilcox LA, Bernshaw NJ, Rosse WF, Parker CJ. Relationship between the membrane inhibitor of reactive lysis and the erythrocyte phenotypes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 1989; 84: 1387–94. 56 Auditore JV, Hartmann RC, Flexner JM, Balchum OJ. The erythrocyte acetylcholinesterase enzyme in paroxysmal nocturnal hemoglobinuria. Arch Pathol 1960; 69: 534–43. 57 Lewis SM, Dacie JV. Neutrophil (leucocyte) alkaline phosphatase in paroxysmal nocturnal haemoglobinuria. Br J Haematol 1965; 11: 549–56. 58 Selvaraj P, Rosse WF, Silber R, Springer TA. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988; 333: 565–7. 59 Simmons DL, Tan S, Tenen DG, Nicholson-Weller A, Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 1989; 73: 284–9. 60 Low MG, Finean JB. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta 1978; 508: 565–70. 61 Staunton DE, Thorley-Lawson DA. Molecular cloning of the lymphocyte activation marker Blast-1. EMBO J 1987; 6: 3695–701. 62 Medof ME, Walter EI, Roberts WL, Haas R, Rosenberry TL. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 1986; 25: 6740–7. 63 Davitz MA, Low MG, Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med 1986; 163: 1150–61. 64 Sugita Y, Mazda T, Tomita M. Amino-terminal amino acid sequence and chemical and functional properties of a membrane attack complex-inhibitory factor from human erythrocyte membranes. J Biochem (Tokyo) 1989; 106: 589–92. 65 Holguin MH, Wilcox LA, Bernshaw NJ, Rosse WF, Parker CJ. Erythrocyte membrane inhibitor of reactive lysis: effects of phosphatidylinositol-specific phospholipase C on the isolated and cell-associated protein. Blood 1990; 75: 284–9. 66 Cross GA. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol 1990; 6: 1–39. 67 Thomas JR, Dwek RA, Rademacher TW. Structure, biosynthesis, and function of glycosylphosphatidylinositols. Biochemistry 1990; 29: 5413–22. 68 Turner MJ, Cardoso de Almeida ML, Gurnett AM, Raper J, Ward J. Biosynthesis, attachment and release of variant surface glycoproteins of the African trypanosome. Curr Top Microbiol Immunol 1985; 117: 23–55. 69 Bordier C, Etges RJ, Ward J, Turner MJ, Cardoso de Almeida ML. Leishmania and Trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc Natl Acad Sci U S A 1986; 83: 5988–91. 70 Andrews N, Ley V, Nussenzweig V. Developmentally regulated expression of a glycophospholipid-anchored surface glyco-protein from amastigotes of Trypanosoma cruzi. Presented at EMBO Workshop: Post-translational Modifi-cation of Proteins by Lipids, Les Diablerets, Switzerland, September 812, 1987: 1a. 71 Telen MJ, Rosse WF, Parker CJ, Moulds MK, Moulds JJ. Evidence that several high-frequency human blood group antigens reside on phosphatidylinositol-linked erythrocyte membrane proteins. Blood 1990; 75: 1404–7. 72 Ikehara Y, Ogata S, Takami N. Chemical and biosynthetic characterization of the membrane-anchoring domain of human placental alkaline phosphatase. Presented at EMBO Workshop: Post-translational Modification of Proteins by Lipids, Les Diablerets, Switzerland, September 812, 1987: 24a. 73 Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A 1986; 83: 7182–6. 74 Jost CJ, Gaillard ML, Fransen JA, Daha MR, Ginsel LA. Intracellular localization of glycosyl-phosphatidylinositol-anchored CD67 and FcRIII (CD16) in affected neutrophil granulocytes of patients with paroxysmal nocturnal hemoglobinuria. Blood 1991; 78: 3030–6. 75 Skubitz KM, Stroncek DF, Sun B. Neutrophil-specific antigen NB1 is anchored via a glycosyl-phosphatidylinositol linkage. J Leukoc Biol 1991; 49: 163–71. 76 Mizukami IF, Vinjamuri SD, Trochelman RD, Todd RF 3d. A structural characterization of the Mo3 activation antigen expressed on the plasma membrane of human mononuclear phagocytes. J Immunol 1990; 144: 1841–8. 77 Fischer GF, Majdic O, Gadd S, Knapp W. Signal transduction in lymphocytic and myeloid cells via CD24, a new member of phosphoinositol-anchored membrane molecules. J Immunol 1990; 144: 638–41. 78 Stahl N, Prusiner SB. Prions and prion proteins. FASEB J 1991; 5: 2799–807. 79 Mikol DD, Stefansson K. A phosphatidylinositol-linked peanut agglutinin-binding glycoprotein in central nervous system myelin and on oligodendrocytes. J Cell Biol 1988; 106: 1273–9. 80 Hefta SA, Hefta LJ, Lee TD, Paxton RJ, Shively JE. Carcinoembryonic antigen is anchored to membranes by covalent attachment to a glycosylphosphatidylinositol moiety: identification of the ethanolamine linkage site. Proc Natl Acad Sci U S A 1988; 85: 4648–52. 81 Takami N, Misumi Y, Kuroki M, Matsuoka Y, Ikehara Y. Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen. J Biol Chem 1988; 263: 12716–20. 82 Alberti S, Miotti S, Formaro M, et al. The Ca-MOv 18 molecule, a cell-surface marker of human ovarian carcinomas, is anchored to the cell membrane by phosphatidylinositol. Biochem Biophys Res Commun 1990; 171: 1051–5. 83 Nagata A, Hirota N, Sakai T, Fujimoto M, Komoda T. Molecular nature and possible presence of a membranous glycanphosphatidylinositol anchor of CA125 antigen. Tumour Biol 1991; 12: 279–86. 84 Chan BL, Lisanti MP, Rodriguez-Boulan E, Saltiel AR. Insulinstimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science 1988; 241: 1670–2. 85 Hooper NM, Keen JN, Turner AJ. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipep-tidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J 1990; 265: 429–33. 86 Lacey SW, Sanders JM, Rothberg KG, Anderson RG, Kamen BA. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. J Clin Invest 1989; 84: 715–20. 87 Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52: 3396–401. 88 Rindler MJ, Naik SS, Li N, Hoops TC, Peraldi MN. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositol-linked membrane protein. J Biol Chem 1990; 265: 20784–9. 89 Low MG, Kincade PW. Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein. Nature 1985; 318: 62–4. 90 Tse AG, Barclay AN, Watts A, Williams AF. A glycophos-pholipid tail at the carboxyl terminus of the Thy-1 glycoprotein of neurons and thymocytes. Science 1985; 230: 1003–8. 91 Reiser H, Oettgen H, Yeh ET, et al. Structural characterization of the TAP molecule: a phosphatidylinositol-linked glycoprotein distinct from the T cell receptor/T3 complex and Thy-1. Cell 1986; 47: 365–70. 92 Koch F, Thiele HG, Low MG. Release of the rat T cell allo-antigen RT-6.2 from cell membranes by phosphatidylinositol-specific phospholipase C. J Exp Med 1986; 164: 1338–43. 93 Koch F, Haag F, Kashan A, Thiele HG. Primary structure of rat RT6.2, a nonglycosylated phosphatidylinositol-linked surface marker of postthymic T cells. Proc Natl Acad Sci U S A 1990; 87: 964–7. 94 Futerman AH, Low MG, Silman I. A hydrophobic dimer of acetylcholinesterase from Torpedo californica electric organ is solubilized by phosphatidylinositol-specific phospholipase C. Neurosci Lett 1983; 40: 85–9. 95 Sikorav JL, Krejci E, Massoulie J. cDNA sequences of Torpedo marmorata acetylcholinesterase: primary structure of the precursor of a catalytic subunit; existence of multiple 5′-untranslated regions. EMBO J 1987; 6: 1865–73. 96 Hemperly JJ, Edelman GM, Cunningham BA. cDNA clones of the neural cell adhesion molecule (N-CAM) lacking a membrane-spanning region consistent with evidence for membrane attachment via a phosphatidylinositol intermediate. Proc Natl Acad Sci U S A 1986; 83: 9822–6. 97 Ferguson MA, Homans SW, Dwek RA, Rademacher TW. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 1988; 239: 753–9. 98 Homans SW, Ferguson MA, Dwek RA, Rademacher TW, Anand R, Williams AF. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 1988; 333: 269–72. 99 Deeg MA, Humphrey DR, Yang SH, Ferguson TR, Reinhold VN, Rosenberry TL. Glycan components in the glycoinositol phospholipid anchor of human erythrocyte acetylcholinesterase. Novel fragments produced by trifluoroacetic acid. J Biol Chem 1992; 267: 18573–80. 100 Roberts WL, Myher JJ, Kuksis A, Low MG, Rosenberry TL. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem 1988; 263: 18766–75. 101 Roberts WL, Santikarn S, Reinhold VN, Rosenberry TL. Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry. J Biol Chem 1988; 263: 18776–84. 102 Walter EI, Roberts WL, Rosenberry TL, Ratnoff WD, Medof ME. Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositol-specific phospholipase C cleavage. J Immunol 1990; 144: 1030–6. 103 Baldwin MA, Stahl N, Reinders LG, Gibson BW, Prusiner SB, Burlingame AL. Permethylation and tandem mass spectrometry of oligosaccharides having free hexosamine: analysis of the glycoinositol phospholipid anchor glycan from the scrapie prion protein. Anal Biochem 1990; 191: 174–82. 104 Roberts WL, Rosenberry TL. Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase. Biochemistry 1986; 25: 3091–8. 105 Walter EI, Toutant JP, Rosenberry TL, Tykocinski ML, Medof ME. Regulation of the susceptibility of decay-accelerating factor's anchor to phosphatidylinositol-specific phospholipase C enzymatic cleavage. Molecular Basis of the Interaction Between Parasites and the Complement System, NIAID, Bethesda, MD, December 18, 1988. 106 Walter EI, Ratnoff WD, Long KE, Kazura JW, Medof ME. Effect of glycoinositolphospholipid anchor lipid groups on functional properties of decay-accelerating factor protein in cells. J Biol Chem 1992; 267: 1245–52. 107 Long KE, Yomtovian R, Kida M, Knez JJ, Medof ME. Time-dependent loss of surface complement regulatory activity during storage of donor blood. Transfusion 1993; 33: 294–300. 108 Ferguson MA, Duszenko M, Lamont GS, Overath P, Cross GA. Biosynthesis o. Trypanosoma brucei variant surface glycoproteins. N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem 1986; 261: 356–62. 109 Lublin DM, Krsek-Staples J, Pangburn MK, Atkinson JP. Biosynthesis and glycosylation of the human complement regulatory protein decay-accelerating factor. J Immunol 1986; 137: 1629–35. 110 Krakow JL, Hereld D, Bangs JD, Hart GW, Englund PT. Identification of a glycolipid precursor of the Trypanosoma brucei variant surface glycoprotein. J Biol Chem 1986; 261: 12147–53. 111 Menon AK, Mayor S, Ferguson MA, Duszenko M, Cross GA. Candidate glycophospholipid precursor for the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins. J Biol Chem 1988; 263: 1970–7. 112 Medof ME, Lublin DM, Holers VM, et al. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci U S A 1987; 84: 2007–11. 113 Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW Jr, Nussenzweig V. Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 1987; 325: 545–9. 114 Tykocinski ML, Shu HK, Ayers DJ, et al. Glycolipid reanchoring of T-lymphocyte surface antigen CD8 using the 3′ end sequence of decay-accelerating factor's mRNA. Proc Natl Acad Sci U S A 1988; 85: 3555–9. 115 Caras IW, Weddell GN, Davitz MA, Nussenzweig V, Martin DW Jr. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 1987; 238: 1280–3. 116 Waneck GL, Sherman DH, Kincade PW, Low MG, Flavell RA. Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor. Proc Natl Acad Sci U S A 1988; 85: 577–81. 117 Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature 1987; 329: 840–2. 118 Dustin ML, Selvaraj P, Mattaliano RJ, Springer TA. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature 1987; 329: 846–8. 119 Medof ME, Tykocinski ML. The cytoplasmic extension as a determinant for glycoinositolphospholipid anchor substitution. In: JK Welply, E Jaworski, eds. Glycobiology. New York: Wiley-Liss, Inc., 1990: 17–22. 120 Micanovic R, Gerber LD, Berger J, Kodukula K, Udenfriend S. Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase. Proc Natl Acad Sci U S A 1990; 87: 157–61. 121 Moran P, Caras IW. Fusion of sequence elements from non-anchored proteins to generate a fully functional signal for glycophosphatidylinositol membrane anchor attachment. J Cell Biol 1991; 115: 1595–600. 122 Ishihara A, Hou Y, Jacobson K. The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A 1987; 84: 1290–3. 123 Thomas J, Webb W, Davitz MA, Nussenzweig V. Decay accelerating factor diffuses rapidly on HeLaAE cell surfaces (abstract). Biophys J 1987; 51: 522a. 124 Gunter KC, Germain RN, Kroczek RA, et al. Thy-1-mediated T-cell activation requires co-expression of CD3/Ti complex. Nature 1987; 326: 505–7. 125 Yeh ET, Reiser H, Daley J, Rock KL. Stimulation of T cells via the TAP molecule, a member in a family of activating proteins encoded in the Ly-6 locus. J Immunol 1987; 138: 91–7. 126 Davis LS, Patel SS, Atkinson JP, Lipsky PE. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 1988; 141: 2246–52. 127 Groux H, Huet S, Aubrit F, Tran HC, Boumsell L, Bernard A. A 19-kDa human erythrocyte molecule H19 is inv

Referência(s)
Altmetric
PlumX