Artigo Revisado por pares

Stress and Fold Localization in Thin Elastic Membranes

2008; American Association for the Advancement of Science; Volume: 320; Issue: 5878 Linguagem: Inglês

10.1126/science.1154069

ISSN

1095-9203

Autores

Luka Pocivavsek, Robert Dellsy, Andrew S. Kern‐Goldberger, Sebastián Johnson, Binhua Lin, Ka Yee C. Lee, Enrique Cerda,

Tópico(s)

Advanced Sensor and Energy Harvesting Materials

Resumo

Thin elastic membranes supported on a much softer elastic solid or a fluid deviate from their flat geometries upon compression. We demonstrate that periodic wrinkling is only one possible solution for such strained membranes. Folds, which involve highly localized curvature, appear whenever the membrane is compressed beyond a third of its initial wrinkle wavelength. Eventually the surface transforms into a symmetry-broken state with flat regions of membrane coexisting with locally folded points, reminiscent of a crumpled, unsupported membrane. We provide general scaling laws for the wrinkled and folded states and proved the transition with numerical and experimental supported membranes. Our work provides insight into the interfacial stability of such diverse systems as biological membranes such as lung surfactant and nanoparticle thin films.

Referência(s)
Altmetric
PlumX