Artigo Revisado por pares

Thermal properties of nanofluids

2012; Elsevier BV; Volume: 183-184; Linguagem: Inglês

10.1016/j.cis.2012.08.001

ISSN

1873-3727

Autores

John Philip, P. D. Shima,

Tópico(s)

Solar Thermal and Photovoltaic Systems

Resumo

Colloidal suspensions of fine nanomaterials in the size range of 1-100 nm in carrier fluids are known as nanofluids. For the last one decade, nanofluids have been a topic of intense research due to their enhanced thermal properties and possible heat transfer applications. Miniaturization and increased operating speeds of gadgets warranted the need for new and innovative cooling concepts for better performance. The low thermal conductivity of conventional heat transfer fluid has been a serious impediment for improving the performance and compactness of engineering equipments. Initial studies on thermal conductivity of suspensions with micrometer-sized particles encountered problems of rapid settling of particles, clogging of flow channels and increased pressure drop in the fluid. These problems are resolved by using dispersions of fine nanometer-sized particles. Despite numerous experimental and theoretical studies, it is still unclear whether the thermal conductivity enhancement in nanofluids is anomalous or within the predictions of effective medium theory. Further, many reports on thermal conductivity of nanofluids are conflicting due to the complex issues associated with the surface chemistry of nanofluids. This review provides an overview of recent advances in the field of nanofluids, especially the important material properties that affect the thermal properties of nanofluids and novel approaches to achieve extremely high thermal conductivities. The background information is also provided for beginners to better understand the subject.

Referência(s)