Magnetic and electrical properties of polypyrrole nanocomposites with iron nanoparticles attached to 2-acrylamido-2-methyl-1-propanesulfonic acid
2013; Wiley; Volume: 35; Issue: 2 Linguagem: Inglês
10.1002/pc.22669
ISSN1548-0569
AutoresC. Basavaraja, Ji Ho Jang, Gyu Ho Jung, Do Sung Huh,
Tópico(s)Supercapacitor Materials and Fabrication
ResumoPolymer CompositesVolume 35, Issue 2 p. 364-371 Article Magnetic and electrical properties of polypyrrole nanocomposites with iron nanoparticles attached to 2-acrylamido-2-methyl-1-propanesulfonic acid C. Basavaraja, C. Basavaraja Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorJi Ho Jang, Ji Ho Jang Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorGyu Ho Jung, Gyu Ho Jung Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorDo Sung Huh, Corresponding Author Do Sung Huh Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaCorrespondence to: Do Sung Huh; e-mail: [email protected]Search for more papers by this author C. Basavaraja, C. Basavaraja Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorJi Ho Jang, Ji Ho Jang Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorGyu Ho Jung, Gyu Ho Jung Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaSearch for more papers by this authorDo Sung Huh, Corresponding Author Do Sung Huh Department of Chemistry and Nanosystem Engineering, Institute of Basic Science, Inje University, Gimhae, Kyungnam, 621–749 South KoreaCorrespondence to: Do Sung Huh; e-mail: [email protected]Search for more papers by this author First published: 19 September 2013 https://doi.org/10.1002/pc.22669Citations: 3Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Polypyrrole (PPy) nanocomposites with iron nanoparticles attached to 2-acrylamido-2-methyl-1-propanesulfonic acid (AMP) were chemically prepared by varying the concentration of AMP using ammonium persulfate as an oxidant. The synthesized composites were characterized by using Fourier transform infrared (FTIR) spectroscopy, and their surface morphology and amended crystallinity were determined by using the transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The electrical and magnetic properties of PPy–Fe–AMP composites were investigated at room temperature. The increase of AMP has brought out a significant increase of DC conductivity and magnetic saturation moment of the composites, which might have been caused by the increased mobility of charge carriers due to the hydrophilic AMP components. POLYM. COMPOS., 35:364–371, 2014. © 2013 Society of Plastics Engineers REFERENCES 1I. Manners, Science, 294, 1664 (2001). 2Y. Chen, L. Sun, O. Chiparus, I. Negulescu, V. Yachmenev, and M. Warnock, J. Polym. Environ., 13, 107 (2005). 3B. Wetzel, F. Haupert, and M.Q. Zhang, Comp. Sci. Technol., 63, 2055 (2003). 4Z. Guo, S. Park, S. Wei, T. Pereira, M. Moldovan, and A.B. Karki, Nanotechnology, 18, 335704 (2007). 5B.C. Sih and M.O. Wolf, Chem. Commun., 3375 (2005). 6J. Smith, M. Josowicz, J.M. Kinyanjui, and D.W. Hatchett, Chem. Mater., 16, 3390 (2004). 7N.V. Blinova, P. Bober, J. Hromadkov, M. Trchova, J. Stejskal, and J. Prokes, Polym. Int., 59, 437 (2010). 8E. Granot, E. Katz, B. Basnar, and I. Willner, Chem. Mater., 17, 4600 (2005). 9S.J. Tian, A. Baba, J.Y. Liu, Z.H. Wang, W. Knoll, M.K. Park, and R. Advincula, Adv. Funct. Mater., 13, 473 (2003). 10P. O'Mullane, S.E. Dale, J.V. Macpherson, and P.R. Unwin, Chem. Commun., 14, 1606 (2004). 11E. Granot, E. Katz, B. Basnar, and I. Willner, Chem. Mater., 17, 4600 (2005). 12Y. Gao, D. Shan, F. Cao, J. Gong, X. Li, H. Ma, Z. Su, and L.Y. Qu, J. Phys. Chem. C, 113, 15175 (2009). 13B.J. Gallon, R.W. Kojima, R.B. Kaner, and P.L. Diaconescu, Angew. Chem., 46, 7251 (2007). 14R.J. Tseng, J. Huang, J. Ouyang, R.B. Kaner, and Y. Yang, Nano. Lett., 5, 1077 (2005). 15D.S. Patil, J.S. Shaikh, S.A. Pawar, R.S. Devan, Y.R. Ma, A.V. Moholkar, J.H. Kim, R.S. Kalubarme, C.J. Park, and P.S. Patil, Phys. Chem. Chem. Phys., 14, 11886 (2012). 16C.M. Intelmann, V. Syritski, D. Tsankov, K. Hinrichs, and J. Rappich, Electrochim. Acta, 53, 4046 (2008). 17M. Bengoechea, I. Boyano, O. Miguel, I. Cantero, E. Ochoteco, J. Pomposo, and H. Grande, J. Power Sources, 160, 585 (2006). 18J. Reut, A. Opik, and K. Idla, Synth. Met., 102, 1392 (1999). 19J.A. Pomposo, J. Rodriguez, and H. Grande, Synth. Met., 104, 107 (1999). 20X. Ren, Q. Zhao, J. Liu, X. Liang, Q. Zhang, and P. Zhang, J. Nanosci. Nanotechnol., 8, 2643 (2008). 21Y. Berdichevsky and Y.H. Lo, Adv. Mater., 18, 122 (2006). 22A. Ramanaviciene and A. Ramanavicius, Biosens. Bioelectron., 20, 1076 (2004). 23G. Brumfiel, Nature, 424, 246 (2003). 24M.H.A. Hassan, Science, 309, 65 (2005). 25W. Zhang, J. Nanopart. Res., 5, 323 (2003). 26O. Celebi, C. Uzum, T. Shahwan, and H.N. Erten, J. Hazardous Mater., 148, 761 (2007). 27S.M. Ponder, J.G. Darab, and T.E. Mallouk, Environ. Sci. Technol., 34, 2564 (2000). 28W. Zhang, J. Nanoparticle Res., 5, 323 (2003). 29J.T. Nurmi, P.G. Tratnyek, G. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, M.W. Matson, R.L. Penn, and M.D. Driessen, Environ. Sci. Technol., 39, 1221 (2005). 30P. Varanasi, A. Fullana, and S. Sidhu, Chemosphere, 66, 1031 (2007). 31M. Nutt, J. Hughes, and M. Wang, Environ. Sci. Technol., 39, 1346 (2005). . 32D. Elliot, J. Cao, W. Zhang, and S. Spear, The 225th ACS National Meeting, New Orleans, LA, United States, 43, 564 (2003). 33Y.Q. Liu, S.A. Majetich, and R.D. Tilton, Environ. Sci. Technol., 39, 1338 (2005). 34J. Cao, D. Elliott, and W. Zhang, J. Nanopart. Res., 7, 499 (2005). 35J. Quinn, C. Geiger, C. Clausen, K. Brooks, C. Coon, and S. O'hara, Environ. Sci. Technol., 39, 1309 (2005). 36F. Yan and J. Texter, Soft Matter, 2, 109 (2006). 37C. Basavaraja, N.R. Kim, E.A. Jo, and D.S. Huh, Polym. Compos., 31, 1754 (2010). 38W. Cheng, Z. Wang, C. Ren, H. Chen, and T. Tang, Mater. Lett., 61, 3193 (2007). 39R. Coskun, C. Soykan, and B. Delibas, Eur. Polym. J., 42, 625 (2006). 40B. L. Rivas, E. Martínez, E. Pereira, and K.E. Geckeler, Polym. Int., 50, 456 (2001). 41J.L. Qiao, H.Y. Takeo, and O. Tatsuhiro, J. Mater. Chem., 15, 4414 (2005). 42Y. Shen, J. Xi, X. Qiu, and W. Zhu, Electrochim. Acta; 52, 6956 (2007). 43O.G. Marambio, G.D. Pizarro, M. Jeria-Orell, M. Huerta, C. Olea-Azar, and W.D. Habicher, J. Polym. Sci. Polym. Chem., 43, 4933 (2005). 44Y.L. Chuan, J. Electroanal. Chem., 571, 255 (2004). 45M.E. Nicho and H. Hu, Sol. Energy Mater. Sol. Cells, 63, 423 (2000). 46S. Li, P. Wu, H. Li, N. Zhu, P. Li, J. Wu, X. Wang, and Z. Dang, Appl. Clay Sci., 50, 330 (2010). 47Y. Shen, J. Xi, X. Qiu, and W. Zhu, Electrochim. Acta, 57, 6956 (2007). 48N. Greesh, P.C. Hartmann, V. Cloete, and R.D. Sanderson, J. Colloid Interface Sci., 319, 2 (2008). 49J. Feng, T.T. Lim, Chemosphere, 66, 1765 (2007). 50C. Basavaraja, W.J. Kim, P.X. Thin, and D.S. Huh, Polym. Compos., 32, 2076 (2011). 51A. Kassim, F.J. Davis, and G.R. Mitchell, Synth. Met., 62, 41 (1994). 52C. Basavaraja, W.J. Kim, D.G. Kim, and D.S. Huh, Mater. Chem. Phys., 129, 787 (2011). 53R. Yuvakkumar, V. Elango, V. Rajendran, and N. Kannan, Digest J. Nanomater. Biostruct., 6, 1771 (2011). 54M. Ziese, C. Srinitiwong, and N. Shearwood, J. Phys. Condens. Matter., 10, L659 (1998). 55G. Bidan, O. Jarjayes, J.M. Fruchart, and E. Hanneeart, Adv. Mater., 6, 152 (1994). 56G. MacDiarmid, J.C. Chang, M. Haperm, W.S. Mu, N.L. Somasiri, W. Wu, and S.I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 187 (1985). 57Z. Tang, Y.H. Geng, J.W.P. Lam, and B.S. Li, Chem. Mater., 11, 1581 (1999). 58J.J. Sumner, S.E. Creager, J.J.A. Ma, and D.D. Desmarteau, J. Electrochem. Soc., 145, 107 (1998). 59S. Slade, S.A. Campbell, T.R. Ralph, and F.C. Walsh, J. Electrochem. Soc., 149, A1556 (2002). Citing Literature Volume35, Issue2February 2014Pages 364-371 ReferencesRelatedInformation
Referência(s)