Artigo Revisado por pares

Fredholm determinants and the Camassa‐Holm hierarchy

2003; Wiley; Volume: 56; Issue: 5 Linguagem: Inglês

10.1002/cpa.10069

ISSN

1097-0312

Autores

H. P. McKean,

Tópico(s)

Algebraic structures and combinatorial models

Resumo

Communications on Pure and Applied MathematicsVolume 56, Issue 5 p. 638-680 Fredholm determinants and the Camassa-Holm hierarchy Henry P. McKean, Henry P. McKean [email protected] Courant Institute, 251 Mercer Street, New York, NY 10012-1185Search for more papers by this author Henry P. McKean, Henry P. McKean [email protected] Courant Institute, 251 Mercer Street, New York, NY 10012-1185Search for more papers by this author First published: 21 February 2003 https://doi.org/10.1002/cpa.10069Citations: 49AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL BIBLIOGRAPHY 1 Beals, R.; Sattinger, D. H.; Szmigielski, J. Multipeakons and the classical moment problem. Adv Math 154 (2000), no. 2, 229– 257. 2 Camassa, R.; Holm, D. D. An integrable shallow water equation with peaked solitons. Phys Rev Lett 71 (1993), no. 11, 1661– 1664. 3 Camassa, R.; Holm, D. D.; Hyman, M. A new integrable shallow water equation. Adv Appl Math 31 (1994), 1– 33. 4 Constantin, A.; Escher, J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math 51 (1998), no. 5, 475– 504. 5 De Gasperis, A.; Holm, D. D.; Hone, A. N. N. A new integrable equation with peakon solutions. In preparation. 6 Dyson, F. J. Fredholm determinants and inverse scattering problems. Comm Math Phys 47 (1976), no. 2, 171– 183. 7 Ercolani, N.; McKean, H. P. Geometry of KdV. IV. Abel sums, Jacobi variety, and theta function in the scattering case. Invent Math 99 (1990), no. 3, 483– 544. 8 Holm, D.; Staley, M. F. Wave structures and non-linear balances in a family of 1 + 1 evolutionary PDEs. In preparation. 9 Its, A. R.; Matveev, V. B. Hill operators with a finite number of lacunae. Funkcional Anal i Priložen 9 (1975), no. 1, 69– 70. 10 McKean, H. P. Geometry of KdV. I. Addition and the unimodular spectral classes. Rev Mat Iberoamericana 2 (1986), no. 3, 253– 261. 11 McKean, H. P. Breakdown of a shallow water equation. Asian J Math 2 (1998), no. 4, 867– 874; McKean, H. P. Breakdown of a shallow water equation. corrected in Asian J Math 3 (1999), 3. 12 McKean, H. P. Addition for the acoustic equation. Comm Pure Appl Math 54 (2001), no. 10, 1271– 1288. 13 McKean, H. P.; Trubowitz, E. The spectral class of the quantum-mechanical harmonic oscillator. Comm Math Phys 82 (1981/82), no. 4, 471– 495. 14 Stieltjes, T. J. Recherches sur les fractions continues. Oeuvres complétes 2, 402– 566. Nordhoff, Gröningen, 1918. 15 Xin, Z.; Zhang, P. On the weak solutions to a shallow water equation. Comm Pure Appl Math 53 2000), no. 11, 1411– 1433. Citing Literature Volume56, Issue5May 2003Pages 638-680 ReferencesRelatedInformation

Referência(s)