Radiation field wave forms produced by lightning stepped leaders
1975; American Geophysical Union; Volume: 80; Issue: 18 Linguagem: Inglês
10.1029/jc080i018p02653
ISSN2156-2202
AutoresE. Philip Krider, George J. Radda,
Tópico(s)Electrical Fault Detection and Protection
ResumoJournal of Geophysical Research (1896-1977)Volume 80, Issue 18 p. 2653-2657 Radiation field wave forms produced by lightning stepped leaders E. Philip Krider, E. Philip KriderSearch for more papers by this authorGeorge J. Radda, George J. RaddaSearch for more papers by this author E. Philip Krider, E. Philip KriderSearch for more papers by this authorGeorge J. Radda, George J. RaddaSearch for more papers by this author First published: 20 June 1975 https://doi.org/10.1029/JC080i018p02653Citations: 61AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Broad band electric field data are presented which show stepped leader wave forms preceding records of distant lightning return strokes. The majority of leader pulses are characterized by a large initial peak with a small and slow opposite overshoot. Total pulse durations range from 15–40 μs several milliseconds before the return stroke to 2–10 μs immediately preceding the return stroke. Close to the ground the stepped leader pulses occur at regular 10- to 20-μs intervals and are almost unipolar with rise times of about 1 MS and full widths at half maximum in the range from 1 to 3 μs. The ratio of the peak of the last leader pulse to the subsequent return stroke peak is typically 0.1, which suggests a peak step current near the ground of about 10% of the return stroke peak current. References Appleton, E. V., F. W. Chapman, On the nature of atmospherics, 4, Proc. Roy. Soc. London, Ser. A, 158, 1–22, 1937. 10.1098/rspa.1937.0001 ADSGoogle Scholar Arnold, H. R., E. T. Pierce, Leader and junction processes in the lightning discharge as a source of VLF atmospherics, Radio Sci., 68D7, 771–776, 1964. Google Scholar Berger, K., Novel observations on lightning discharges: Results of research on Mount San Salvatore, J. Franklin Inst., 283, 478–525, 1967. 10.1016/0016-0032(67)90598-4 Web of Science®Google Scholar Clarence, N. D., D. J. Malan, Preliminary discharge processes in lightning flashes to ground, Quart. J. Roy. Meteorol. Soc., 83, 161–172, 1957. 10.1002/qj.49708335603 ADSWeb of Science®Google Scholar Fisher, R. J., M. A. Uman, Measured electric field rise times for first and subsequent lightning return strokes, J. Geophys. Res., 773, 399–406, 1972. 10.1029/JC077i003p00399 ADSWeb of Science®Google Scholar Hodges, D. B., A comparison of the rates of change of current in the step and return processes of lightning flashes, Proc. Phys. Soc. London, 1367, 582–584, 1954. 10.1088/0370-1301/67/7/410 ADSWeb of Science®Google Scholar Isikawa, H., M. Takagi, On the fine struct.ure of atmospherics from near origins, Proc. Res. Inst. Atmos. Nagoya, 2, 9–25, 1954. Google Scholar Isikawa, H., M. Takagi, On the fine structure of atmospherics near their origins, 2, Proc. Res. Inst. Atmos. Nagoya, 3, 29–42, 1955. Google Scholar Isikawa, H., M. Takagi, T. Takenti, On the leader waveforms of atmospherics near the origins, Proc. Res. Inst. Atmos. Nagoya, 5, 1–11, 1958. Google Scholar Kitagawa, N., M. Brook, A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res., 654, 1189–1201, 1960. 10.1029/JZ065i004p01189 ADSWeb of Science®Google Scholar Kitagawa, N., M. Kobayashi, Field-changes and variations of luminosity due to lightning flashes, Recent Advances in Atmospheric Electricity, 485–501, Pergamon, New York, 1958. Google Scholar Krider, E. P., The relative light intensity produced by a lightning stepped leader, J. Geophys. Res., 7930, 4542–4544, 1974. 10.1029/JC079i030p04542 ADSWeb of Science®Google Scholar Krider, E. P., C. G. Ladd, Upward streams in lightning discharges to mountainous terrain, Weather, 303, 77–81, 1975. 10.1002/j.1477-8696.1975.tb05282.x ADSGoogle Scholar Krider, E. P., R. C. Noggle, Broadband antenna systems for lightning magnetic fields, J. Appl. Meteorol., 142, 252–256, 1975. 10.1175/1520-0450(1975)014 2.0.CO;2 ADSWeb of Science®Google Scholar Lin, Y. T., M. A. Uman, Electric radiation fields of lightning return strokes in three isolated Florida thunderstorms, J. Geophys. Res., 7833, 7911–7915, 1973. 10.1029/JC078i033p07911 ADSWeb of Science®Google Scholar McLain, D. K., M. A. Uman, Exact expression and moment approximation for the electric field intensity of the lightning return stroke, J. Geophys. Res., 769, 2101–2105, 1971. 10.1029/JC076i009p02101 ADSWeb of Science®Google Scholar Müller-Hillebrand, D., The theory of the stepped and dart leader, Problems of Atmospheric and Space Electricity, 332–336, Elsevier, New York, 1965. Google Scholar Norinder, H., E. Knudsen, Pre-discharges in relation to subsequent lightning strokes, Ark. Geofys., 227, 551–571, 1957. Google Scholar Pierce, E. T., Electrostatic field changes due to lightning discharges, Quart. J. Roy. Meteorol. Soc., 81, 211–228, 1955. 10.1002/qj.49708134808 ADSWeb of Science®Google Scholar Schonland, B. F. J., The lightning discharge, Handbuch der Physik, 22, 576–628, Springer, New York, 1956. 10.1007/978-3-642-45847-7_7 Google Scholar Schonland, B. F. J., D. J. Malan, H. Collens, Progressive lightning, 2, Proc. Roy. Soc. London, Ser. A, 152, 595–625, 1935. 10.1098/rspa.1935.0210 ADSGoogle Scholar Takagi, M., VHF radiation from ground discharges, Proc. Res. Inst. Atmos. Nagoya, 16, 163–168, 1969. Google Scholar Uman, M. A., D. K. McLain, Magnetic field of lightning return stroke, J. Geophys. Res., 7428, 6899–6910, 1969. 10.1029/JC074i028p06899 ADSWeb of Science®Google Scholar Uman, M. A., D. K. McLain, Radiation field and current of the lightning stepped leader, J. Geophys. Res., 756, 1058–1066, 1970a. 10.1029/JC075i006p01058 ADSWeb of Science®Google Scholar Uman, M. A., D. K. McLain, Lightning return stroke current from magnetic and radiation field measurements, J. Geophys. Res., 7527, 5143–5147, 1970b. 10.1029/JC075i027p05143 ADSWeb of Science®Google Scholar Uman, M. A., D. K. McLain, R. J. Fisher, E. P. Krider, Electric field intensity of the lightning return stroke, J. Geophys. Res., 7818, 3523–3529, 1973a. 10.1029/JC078i018p03523 ADSWeb of Science®Google Scholar Uman, M. A., D. K. McLain, R. J. Fisher, E. P. Krider, Currents in Florida lightning return strokes, J. Geophys. Res., 7818, 3530–3537, 1973b. 10.1029/JC078i018p03530 ADSWeb of Science®Google Scholar Uman, M. A., R. D. Brantley, Y. T. Lin, J. A. Tiller, E. P. Krider, D. K. McLain, Correlated electric and magnetic fields from lightning return strokes, J. Geophys. Res., 803, 373–376, 1975a. 10.1029/JC080i003p00373 ADSWeb of Science®Google Scholar Uman, M. A., D. K. McLain, E. P. Krider, The electromagnetic radiation from a finite antenna, Amer. J. Phys., 431, 33–38, 1975b. 10.1119/1.10027 ADSWeb of Science®Google Scholar Citing Literature Volume80, Issue18Oceans20 June 1975Pages 2653-2657 ReferencesRelatedInformation
Referência(s)