Revisão Acesso aberto Revisado por pares

Onset and forces of term labor

1997; Informa; Volume: 76; Issue: 6 Linguagem: Inglês

10.3109/00016349709024574

ISSN

1600-0412

Autores

U. Ulmsten,

Tópico(s)

Employment and Welfare Studies

Resumo

Acta Obstetricia et Gynecologica ScandinavicaVolume 76, Issue 6 p. 499-514 Free Access Onset and forces of term labor Ulf Ulmsten, Ulf Ulmsten Department of Obstetrics and Gynaecology, Uppsala University Hospital, Uppsala, SwedenSearch for more papers by this author Ulf Ulmsten, Ulf Ulmsten Department of Obstetrics and Gynaecology, Uppsala University Hospital, Uppsala, SwedenSearch for more papers by this author First published: 31 December 2010 https://doi.org/10.3109/00016349709024574Citations: 5 Ulf Ulmsten, Department of Obstetrics and Gynecology Uppsala University Hospital S-751 85, Uppsala, Sweden AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Calder A A.. Scientific and clinical aspects. Uterine contractility: Mechanisms of control, Serono symposia Norwell, R E. Garfield, MA 1990; 283–93. Google Scholar Wedenberg K.. Bioenergetics of human uterine and bladder smooth muscles. Doctoral Thesis, Uppsala University. 1994; 509. Google Scholar Wedenberg K., Ronquist G., Malmström A., Ulmsten U.. Low energy charge of pregnant human uterus regardless of functional status in comparison with non-pregnant uterus. Biochim Biophys Acta 1990; 1033: 31–4. 10.1016/0304-4165(90)90190-8 CASPubMedWeb of Science®Google Scholar Wedenberg K., Ronquist G., Malmström A., Ulmsten U.. Regional differences in energy charge of pregnant human uterus regardless of functional status in comparison with non-pregnant uterus. Biochim Biophys Acta 1991; 1059: 147–51. 10.1016/S0005-2728(05)80231-2 Web of Science®Google Scholar Steingrimsdottir T., Ronquist G., Ulmsten U.. Energy economy in the pregnant human uterus at term: Studies on arterriovernous differences in metabolites of carbohydrate, fat and nucleotides. Eur J Obstet Gynecol Reprod Biol 1993; 51: 209–15. 10.1016/0028-2243(93)90037-D CASPubMedWeb of Science®Google Scholar Steingrimsdottir T.. Energy economy of the human uterus. Doctoral Thesis, Uppsala University. 1996; 637. Google Scholar Liggins G C.. Initiation of spontaneous labor. Clin Obstet Gynecol 1983; 26: 47–55. 10.1097/00003081-198303000-00009 CASPubMedGoogle Scholar Ciray N H.. Gap junctions in human myometrium. Doctoral Thesis, Uppsala University. 1996. Google Scholar Rczapour M.. Cellular aspects of dysfunctional labor. Doctoral Thesis, Uppsala University. 1996, nr 657. Google Scholar Lye S I.. The initiation and inhibition of labor towards a molecular understanding. Semin Reprod Endocrinol 1994; 12: 284–97. 10.1055/s-2007-1016409 Web of Science®Google Scholar Casey M L., MacDonald P C.. Molecular and cellular aspects. Uterine Function, M E. Carsten, J D. Miller. Plenum, New York 1990; 501–7. 10.1007/978-1-4613-0575-0_17 Google Scholar Batra S.. Hormonal control of myometrial function. The uterus, T. Chard, J G. Grudzinskus. Cambridge University Press, Cambridge 1994; 173–92. Web of Science®Google Scholar Kawarabayashi T., Kishikawa T., Sugimori H.. Effects of external calcium, magnesium, and temperature on spontaneous contractions of pregnant human myometrium. Biol Reprod 1989; 40: 942–8. 10.1095/biolreprod40.5.942 CASPubMedWeb of Science®Google Scholar Sanborn B M.. Ion channels and the control of myomctrial electrical activity. Semin Perinatal 1995; Vol 19(No 1) 31–40. 10.1016/S0146-0005(95)80045-X Web of Science®Google Scholar Ganong F W.. Section 1. Review of Medical Physiology16th edn. CN Appleton & Langc, East Norwalk 1993; 1–109. Google Scholar Kao C -Y. Electrophysiological properties of uterine smooth muscle. Biology of the Uterus2nd edn., R M. Wynn, W P. Jollie. Plenum Medical Company, New York London 1989; 403–54. 10.1007/978-1-4684-5589-2_14 Google Scholar Ulmsten U., Andersson K E., Forman A.. Relaxing effects of nifedipine on the non-pregnant human uterus in vitro and in vivo. Obstet Gynecol 1978; 52: 436–9. CASPubMedWeb of Science®Google Scholar Inone Y., Nakao K., Okabe K., et al. Some electrical properties of human pregnant myometrium. Am J Obstet Gynecol 1990; 162: 1090–8. 10.1016/0002-9378(90)91322-4 PubMedWeb of Science®Google Scholar Young R C., Smoth L H., McLaren M D.. L-and T-type calcium channels in freshly dispersed human uterine smooth muscle cells. Am J Obstet Gynecol 1993; 169: 785–802. 10.1016/0002-9378(93)90006-5 CASPubMedWeb of Science®Google Scholar Phillip M.. The effects of thimerosal, a sulphydryl reagent, on phasic myometrial contractions. Biochem Biophs Res Commun 1995; 6: 1–6, 211(1). 10.1006/bbrc.1995.1769 Web of Science®Google Scholar Morishita F., Kawarabayashi T., Sakamato Y., Shirakawa K.. Role of the sodium-calcium exchange mechanism and the effect of magnesium on sodium-free and high-potassium contractures in pregnant human myometrium. Am J Obstet Gynecol 1995; 172: 186–95. 10.1016/0002-9378(95)90111-6 CASPubMedWeb of Science®Google Scholar Hille B.. Ionic channels of excitable membranes(ed2). Simmer Assoc, Sunderland, MA 1992. Google Scholar Toro L., Stefani E E., Rulkar S.. Hormonal regulation of potassium currents in single myometrial-cells. Proc Natl Acad Sci USA 1990; 87: 2892–5. 10.1073/pnas.87.8.2892 CASPubMedWeb of Science®Google Scholar Anwer K., Oberti C., Perez G J., et al. Calcium-activated K + channels as modulators of human myometrial contractile activity. Am J Physiol 1993; 265: C976–85. 10.1152/ajpcell.1993.265.4.C976 CASPubMedWeb of Science®Google Scholar Anwer K., Toro L., Oberti C., et al. Calcium-activated potassium channels in pregnant myometrium, modulation by beta-adrenergic agents. Am J Physiol 1992; 263: C1049–56. 10.1152/ajpcell.1992.263.5.C1049 CASPubMedWeb of Science®Google Scholar Sanborn B M.. Rat myometrial Na/K ATPase is increased by serum but not by isoproterenol and relaxin. Comp Biochem Physiol 1989; 93C: 341–4. Google Scholar Adelwochrer M E., Mahnert W.. Hexoprenaline activates potassium channels of human myometrial myocytes. Arch Gynecol Obstet 1993; 252: 179–84. 10.1007/BF02426355 PubMedWeb of Science®Google Scholar Kroeger E A., Marshall J M.. Beta-adrenergic effects on rat myometrium: Mechanisms of membrane hyperpolarization. Am J Physiol 1973; 225: 1339–45. CASPubMedWeb of Science®Google Scholar Ludmir J., Solomond D., Eruklar S D.. Hormonal influence on ionic channels in myometrium. Microsc Res Tech 1993; 25: 134–47. 10.1002/jemt.1070250206 CASPubMedWeb of Science®Google Scholar Khan R N., Smith S K., Morriso J J., et al. Properties of large-conductance K+ channels in human myometrium during pregnancy and labor. Proc R Soc Lond Biol Sci 1993; 252: 179–84. Google Scholar Cheuk J M S., Hollingsworth M., Hughes S J., et al. Inhibition of contractions of the isolated human myometrium by potassium channel openers. Am J Obstet Gynecol 1993; 168: 953–60. 10.1016/S0002-9378(12)90852-2 CASPubMedWeb of Science®Google Scholar Coleman H A., Parkington H C.. Single channel CI- and K+ currents from cells of uterus not treated with enzymes. Plugers Arch 1987; 410: 560–2. 10.1007/BF00586540 CASPubMedWeb of Science®Google Scholar Parkington H C., Coleman H A.. The role of membrane potential in the control of uterine motility. Uterine function: molecular and cellular aspects, M E. Carsten, J D. Miller. Plenum Press, New York, NY 1990; 195–248. 10.1007/978-1-4613-0575-0_7 Google Scholar Mizuki J., Tasaka K., Nobuyuki M., Kasahara K., et al. Magnesium sulfate inhibits oxytocin-induced calcium mobilization in human puerperal myometrial cells: Possible involvement of intracellular free magnesium concentration. Am J Obstet Gynecol 1993; 169: 134–9. 10.1016/0002-9378(93)90147-B CASPubMedWeb of Science®Google Scholar Steer P J., Carter M C., Beard R W.. Normal levels of active contraction area in spontaneous labor. Br J Obstet Gynaecol 1984; 91: 211–19. 10.1111/j.1471-0528.1984.tb04755.x CASPubMedWeb of Science®Google Scholar Arulkumaran S., Yang M., Ratnam S S.. Reliability of intrauterine pressure measurements. Obstet Gynecol 1991; 78: 800–2. CASPubMedWeb of Science®Google Scholar Allman A C J., Genevier E S G., Johnson M R., Steer Ph J.. Head to cervix force: an important variable in labour 2. Peak active force, peak active pressure and mode of delivery. Br J Obstet Gynaecol 1996; 103: 769–75. 10.1111/j.1471-0528.1996.tb09871.x CASPubMedWeb of Science®Google Scholar Lowenstein W R.. The cell-to-cell channel of gap junctions. Cell 1987; 48: 725–36. 10.1016/0092-8674(87)90067-5 CASPubMedWeb of Science®Google Scholar Beyer E C., Kistler J., Paul D L., Goodenough D A.. Antisera directed against connexin 43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 1989; 105: 2621–9. 10.1083/jcb.105.6.2621 PubMedWeb of Science®Google Scholar Lang L M., Beyer E C., Schwartz A L., Gitlin J D.. Molecular cloning of a rat uterine gap junction protein and analysis of gene expression during gestation. Am J Physiol 1991; 260: E87–93. Google Scholar Winterhager E., Stutenkemper R., Traub O., Beyer E., Willecke K.. Expression of different connexin genes in rat uterus during decidualization and at term. Eur J Cell Biol 1991; 55: 133–42. CASPubMedWeb of Science®Google Scholar Laird D., Puranam K L., Revel J R.. Turnover and phosphorylation dynamics of connexin 43 gap junction protein in cultured cardiac myocytes. Biochem J 1991a; 273: 67–72. 10.1042/bj2730067 CASPubMedWeb of Science®Google Scholar Laird D., Musil L., Goodenough D A.. Biochemical analysis of connexin 43 intracellular transport, phosphorylation, and assembly into gap junctional plagues. J Cell Biol 1991b; 115: 1357–74. 10.1083/jcb.115.5.1357 PubMedWeb of Science®Google Scholar Stagg R., Fletcher W H.. The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocrine Rev 1990; 11: 302–25. 10.1210/edrv-11-2-302 CASPubMedWeb of Science®Google Scholar Garfield R E., Sims S., Daniel E E.. Gap junctions: their presence and necessity in myometrium during parturition. Science 1977; 98: 958–60. 10.1126/science.929182 Web of Science®Google Scholar Petrocelli T., Lye S J.. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology 1993; 133: 284–90. 10.1210/en.133.1.284 CASPubMedWeb of Science®Google Scholar Tabb T., Thilander G., Grover A., Hetzberg E., Garfield R E.. An immunohistochemical and immunocytologic study of increase in myometrial gap junctions (and connexin 43) in rats and humans during pregnancy. Am J Obstet Gynecol 1992; 167: 559–67. 10.1016/S0002-9378(11)91453-7 CASPubMedWeb of Science®Google Scholar Garfield R E., Hayashi R H.. Presence of gap junction's in the myometrium of women during various stages of menstruation. 1980; 138: 569–74. Google Scholar Cole W C., Garfield R E., Kirkaldy J S.. Gap junctions and direct intracellular communication between rat uterine smooth muscle cell. Am J Physiol Cell Physiol 1985; 1: 8, 249: C20-C31. Google Scholar Kilarski W M., Rezapour M., Bäckström T., Roomans G M., Ulmsten U.. Morphometric analysis of gap junction density in human myometrium at term. Acta Obstet Gynecol Scand 1994; 73: 377–84. 10.3109/00016349409006247 CASPubMedWeb of Science®Google Scholar Lye S J., Nicholson B J., Mascerenhas M., McKenzie L., Petrocelli T.. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen: progesterone ratio. Endocrinology 1993; 132: 2380–6. 10.1210/en.132.6.2380 CASPubMedWeb of Science®Google Scholar Garfield R E., Puri C P., Csapo Al. Endocrine, structural and functional changes in the uterus during premature labor. Am J Obstet Gynecol 1982; 142: 21–7. CASPubMedWeb of Science®Google Scholar Garfield R E.. Structural and functional studies of the control of myometrial contractility and labor. The onset of labor: cellular and integrative mechanisms, D. MacNellis, J RG Challis, P C. MacDonald, P W. Nathnielsz, J M. Roberts. Perinatology Press, Ithaca New York 1988; 55–77. Web of Science®Google Scholar Ciray H N., Persson B E., Roomans G M., Ulmsten U.. Dyecoupling between term pregnant human myometrial cells before labor: Carboxyfluorescein versus Luciefer Yellow. Cell Biol Int 1995; 19: 609–17. 10.1006/cbir.1995.1108 PubMedWeb of Science®Google Scholar McDonough P G.. Molecular biology in reproductive endocrinology. SSC and Jaffe RB. Reproductive endocrinology. Saunders Co, Philadelphia 1991; 25–64. Google Scholar Aronica S M., Katzenellenbogen B S.. Progesterone receptor regulation in uterine cells, stimulation by estrogen, cyclic adenosine 3′,5′-monophosphate, and insulin-like growth factor 1 and suppression by antiestrogen and protein kinase inhibitors. Endocrinology 1991; 128: 2045–52. 10.1210/endo-128-4-2045 CASPubMedWeb of Science®Google Scholar Baulieu E E.. RU 486. An antiprogestin with contraceptive activity in women. The antiprogestin steroid RU 486 and human fertility control, E E. Baulieu, S J. Segal. Plenum Press, New York 1985; 1–25. 10.1007/978-1-4684-1242-0_1 Web of Science®Google Scholar Chwalisz K., Fahrenholz F., Hackenberg M., Garfield R., Elger W.. The progesterone antagonist onapristone increases the effectiveness of oxytocin to produce delivery without changing the myometrial oxytocin receptor concentrations. Am J Obstet Gynecol 1991; 165: 1760–70. 10.1016/0002-9378(91)90030-U CASPubMedWeb of Science®Google Scholar Germain G., Philibert D., Pettier J., Mouren M., Baulieu E.. Effect of the antiprogesterone agent RU486 on the natural cycle and gestation in intact cynomolgus monkeys. The antiprogestin steroid RU486 and human fertility control, E E. Baulieu, S J. Segal. Plenum Press, New York 1985; 155–67. 10.1007/978-1-4684-1242-0_13 Google Scholar Bygdeman M., Swahn M L.. Progesterone receptor blockage. Effect on uterine contractility and early pregnancy. Contraception 1985; 32: 45–51. 10.1016/0010-7824(85)90115-5 CASPubMedWeb of Science®Google Scholar Selinger M., Mackenzie I Z., Gilmer M D., Phipps S L., Ferguson J.. Progesterone inhibition in mid trimester termination of pregnancy: Biological and clinical aspects. Br J Obstet Gynaecol 1987; 94: 1218–22. 10.1111/j.1471-0528.1987.tb02325.x CASPubMedWeb of Science®Google Scholar Rodger M W., Baird D T.. Pretreatment with mifepristone (RU 486) reduces interval between prostaglandin administration and expulsion in second trimester abortion. Br J Obstet Gynaecol 1987; 157: 1489–95. Google Scholar Siiteri P K.. Some new thoughts on the fetoplacental unit and parturition in primates. Fetal endocrinology, M J. Novy, J A. Resko. Academic Press, New York 1981; 427–59. Google Scholar Turnbull A C., Anderson A B M., Flint A P F., Jeremy J Y., Keirse M J N C., Mitchell M D.. Human parturition. Ciba Foundation Symposium. Elsevier, Amsterdam 1977. Google Scholar Mathur R S., Landgrebe S., Williamson O H.. Progesterone, 17-hydroxyprogesterone, estradiol and estriol in late pregnancy and labor. Am J Obstet Gynecol 1980; 136: 25–7. 10.1016/0002-9378(80)90558-X CASPubMedWeb of Science®Google Scholar Boroditsky R S., Reyes F I., Winter J S D.. Maternal serum estrogen and progesterone concentrations proceeding normal labor. Obstet Gynecol 1978; 51: 686–91. CASPubMedWeb of Science®Google Scholar Cousins M L., Hoble J C., Chang J R., Okada D M., Marshall J R.. Serum progesterone and estradiol-17 β levels in premature and term labor. Am J Obstet Gynecol 1977; 127: 612–5. 10.1016/0002-9378(77)90359-3 CASPubMedWeb of Science®Google Scholar Anderson P J., Hancock K W., Oakey R E.. Non-protein-bound oestradiol and progesterone in human peripheral plasma before labor and delivery. J Endocrinol 1985; 104: 7–15. 10.1677/joe.0.1040007 CASPubMedWeb of Science®Google Scholar Willcox D L., Yovich J L., McColm S C., Phillips J M.. Progesterone, Cortisol and estradiol-17 beta in the initiation of human parturition: partitioning between free and bound hormone in plasma. Br J Obstet Gynaecol 1985; 92: 65–71. 10.1111/j.1471-0528.1985.tb01050.x CASPubMedWeb of Science®Google Scholar Soloff M S.. Endocrine control of parturition. Biology of the uterus, R M. Wynn, W P. Jolic. Plenum Publications, New York 1989; 559–607. 10.1007/978-1-4684-5589-2_17 Google Scholar Antonipillai I., Beverley E., Murphy P.. Serum estrogens and progesterone in mother and infant at delivery. Br J Obstet Gynaecol 1977; 84: 179–85. 10.1111/j.1471-0528.1977.tb12552.x PubMedWeb of Science®Google Scholar Wu W X., Myers D A., Nathanielsz P W.. Changes in estrogen receptor messenger ribonucleic acid in sheep fetal and maternal tissues during late gestation and labor. Am J Obstet Gynecol 1995; 172: 844–50. 10.1016/0002-9378(95)90009-8 CASPubMedWeb of Science®Google Scholar Chibbar R., Wong S., Miller F D., Mitchell B F.. Estrogen stimulates oxytocin gene expression in human chorio-de-cidua. J Clin Endocrinol Metab 1995; 80: 567–72. 10.1210/jc.80.2.567 CASPubMedWeb of Science®Google Scholar Mitchell B F., Challis J R G.. Estrogen and progesterone metabolism in fetal membranes. Physiology and biochemistry of human fetal membranes, B F. Mitchell. Perinatology Press, Ithaca 1988; 5–28. Google Scholar Mitchell B F., Wong S.. Changes in 17β/20α-hydroxysteroid dehydrogenase activity supporting an increase in the estrogen/progesterone ratio of human fetal membranes at parturition. Am J Obstet Gynecol 1993; 168: 1377–85. 10.1016/S0002-9378(11)90768-6 CASPubMedWeb of Science®Google Scholar Carr B R., Simpson E R.. Lipoprotein utilization and cholesterol synthesis by the human fetal adrenal gland. Endoc Rev 1981; 2: 306–26. 10.1210/edrv-2-3-306 CASPubMedWeb of Science®Google Scholar Howard P., Weist W.. Progesterone metabolism by uterine tissue. Steroids 1972; 19: 133–7. 10.1016/0039-128X(72)90025-6 Web of Science®Google Scholar Mickan H.. Saturated metabolites of progesterone in human myometrium during pregnancy. Steroids 1976; 27: 65–77. 10.1016/0039-128X(76)90069-6 PubMedWeb of Science®Google Scholar Milcwich L., Gant N F., Schwarz B E., Chen G T., MacDonald P C.. Initiation of human parturition. IX. Progesterone metabolism by placentas of early and late human gestation. Obstet Gynecol 1978; 51: 278–80. PubMedWeb of Science®Google Scholar Rothchild S.. Role of progesterone in interacting and maintaining pregnancy. Progesterone and progestins, C W. Bardin, E. Milgrom, P. Mauvais-Jarvis. Raven Press, New York 1983; 219–29. Google Scholar Csapo A I.. Progesterone ‘block’. Am J Anat 1956; 98: 273–91. 10.1002/aja.1000980206 CASPubMedWeb of Science®Google Scholar Batra S., Bengtsson L P., Grundsell H., Sjöberg N O.. Levels of free and protein-bound progesterone in plasma during late pregnancy. J Clin Endocrinol Metab 1976; 42: 1041–7. 10.1210/jcem-42-6-1041 CASPubMedWeb of Science®Google Scholar Chew P C T., Ratnam S S.. Serial plasma progesterone levels at the approach of labor. J Endocrinol 1976; 69: 163–74. 10.1677/joe.0.0690163 CASPubMedWeb of Science®Google Scholar Parker C R., Everett R B., Quirk J G., et al. Hormone production during pregnancy in the primigravid patient. Am J Obstet Gynecol 1979; 135: 778–82. 10.1016/0002-9378(79)90391-0 CASPubMedWeb of Science®Google Scholar Maynard P V., Stein P E., Symonds S M.. Umbilical cord plasma progesterone at term in relation to mode of delivery. Br J Obstet Gynaecol 1982; 89: 989–93. 10.1111/j.1471-0528.1982.tb04652.x CASPubMedWeb of Science®Google Scholar Kofinas A D., Rose J C., Kofuritink D R., Meis P J.. Progesterone and estradiol concentrations in nonpregnant and pregnant human myometrium. J Reprod Med 1990; 35: 1045–50. CASPubMedWeb of Science®Google Scholar Fu X.. Contractile activity of term human myometrium. In vitro studies of steroids and oxytocin regulatory effects. Doctoral Thesis, Uppsala University. 1995; 566. Google Scholar McEwen B S., Coirini H., Schumacher M.. Steroid and neuronal activity. Ciba Foundation Symposium 153, John Wiley & Sons, New York 1990; 3–21. Web of Science®Google Scholar Schumacher M., Cohuni H., Pfaff D W., McEwen B C.. Behavioral effects of progesterone associated by rapid modulation of oxytocin receptors. Science 1990; 250: 691–4. 10.1126/science.2173139 CASPubMedWeb of Science®Google Scholar Blackmore P F., Neulen J., Lattanzio F., Beebe S I.. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J Biol Chem 1990; 265: 1376–80. CASPubMedWeb of Science®Google Scholar Rendt J M., Toro L., Stefani E., Erulkar S D.. Progesterone increases calcium currents in myomctrial cells from immature and nonpregnant adult rats. Am J Physiol 1992; 262: C293–301. 10.1152/ajpcell.1992.262.2.C293 CASPubMedWeb of Science®Google Scholar Haukkamaa M.. High affinity progesterone binding sites of human uterine microsomal membranes. J Steroid Biochem 1984; 20: 569–73. 10.1016/0022-4731(84)90125-0 CASPubMedWeb of Science®Google Scholar Novy M J.. Mechanisms controlling term and preterm birth: lessons from non-human primates. Simpson Symposia, Edinburgh 1995. Google Scholar Healy D L.. Progesterone receptor antagonists and prostaglandins in human fertility regulation: a clinical review. Reprod Fertil Dev 1990; 2: 477–90. 10.1071/RD9900477 CASPubMedWeb of Science®Google Scholar Garfield R E., Case J M., Baulieu E.. Effects of the antipro-gesterone RU 486 on preterm birth in the rat. Am J Obstet Gynecol 1987; 157: 1281–5. 10.1016/S0002-9378(87)80315-0 CASPubMedWeb of Science®Google Scholar Frydman R., Lelaidier C., Baton-Saint-Mleux C., et al. Labor induction in women at term with mifepristone (RU486): A double-blind, randomized, placebo-controlled study. Obstet Gynecol 1992; 80: 972–5. CASPubMedWeb of Science®Google Scholar Haluska G J., Kaler C A., Cook M J., Novy M J.. Prostaglandin production during spontaneous labor and after treatment with RU486 in pregnant rhesus macaques. Biol Reprod 1994; 51: 760–5. 10.1095/biolreprod51.4.760 CASPubMedWeb of Science®Google Scholar Bigsby R M., Young P C M.. Estrogenic effects of the anti-progestin onapristone (ZK98.299) in the rodent uterus. Am J Obstet Gynecol 1994; 171: 188–94. 10.1016/0002-9378(94)90468-5 CASPubMedWeb of Science®Google Scholar Chwalisz K., Benson M., Scholz P., Daum J., Beier H M., Helgele-Hartung H.. Cervical ripening with the cytokines interleukin 8 (IL-8), interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) in guinea pigs. Hum Reprod 1994; 9: 273–81. PubMedWeb of Science®Google Scholar Bentley P J.. Evolution of neurohypophysial peptide functions. Evolution of vertebrate endocrine system, P KT Pang, A. Epple. Texas Tech. Press, Lubboch, Texas 1980; 95–105. Google Scholar Poulin D A., Wakerley J B.. Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin. Neuroscience 1982; 7: 773–808. 10.1016/0306-4522(82)90044-6 PubMedWeb of Science®Google Scholar Rall T W., Schleifer L S.. Oxytocin, prostaglandins, ergot alkaloids and other agents. Goodman and Gilman's The Pharmacological basis of the Therapeutics6th ed., L S. Goodman, A. Gilman. MacMillan Publishing Co., Inc, New York 1980; 935–50. Google Scholar Rosenbloom A A., Sack J., Fisher D A.. The circulating vasopressinase of pregnancy: species comparison with radioimmunoassay. Am J Obstet Gynecol 1975; 121: 316–20. 10.1016/0002-9378(75)90005-8 CASPubMedWeb of Science®Google Scholar Thornton S., Gillespie J L., Greenwell J R., Dunlop W.. Mobilization of calcium by the brief application of oxytocin and prostaglandin E2 in single cultured human myometrial cells. Exp Physiol 1992; 77: 293–305. 10.1113/expphysiol.1992.sp003589 CASPubMedWeb of Science®Google Scholar Molnar M., Hertelendy F.. Regulation of intracellular free calcium in human myometrial cells by prostaglandin F2α: Comparison with oxytocin. J Clin Endocrinol Metab 1990; 71: 1243–50. 10.1210/jcem-71-5-1243 CASPubMedWeb of Science®Google Scholar Schrey M P., Cornford P A., Read A M., Steer P J.. A role for phosphoinositide hydrolysis in human uterine smooth muscle during parturition. Am J Obstet Gynecol 1988; 159: 964–70. 10.1016/S0002-9378(88)80182-0 CASPubMedWeb of Science®Google Scholar Carsten M E., Miller J D.. A new look at uterine muscle contraction. Am J Obstet Gynecol 1987; 157: 1303–15. 10.1016/S0002-9378(87)80320-4 CASPubMedWeb of Science®Google Scholar Kimura T., Azuma C H., Saji F., Takemura M., Tokugawa Y., Miki M., et al. Estimation by an electrophysiological method of the expression of oxytocin receptor mRNA in human myometrium during pregnancy. J Steroid Biochem Mol Biol 1992; 42: 253–8. 10.1016/0960-0760(92)90127-5 CASPubMedWeb of Science®Google Scholar Fuchs A R., Periyasamy S., Alexandrova M., Soloff M S.. Correlation between oxytocin receptor concentration and responsiveness to oxytocin in pregnant rat, in vivo, myometrium. Endocrinology 1983; 113: 742–9. 10.1210/endo-113-2-742 CASPubMedWeb of Science®Google Scholar Fuchs A R., Fuchs F., Husslein P., Soloff M S.. Oxytocin receptors in the human uterus during pregnancy. Am J Obstet Gynecol 1984a; 150: 734–41. 10.1016/0002-9378(84)90677-X CASPubMedWeb of Science®Google Scholar Fuchs A R., Fuchs F.. Endocrinology of human parturition: a review. Br J Obstet Gynaecol 1984b; 91: 949–63. 10.1111/j.1471-0528.1984.tb03671.x Google Scholar Maggi M., Magini A., Fiscella A., Giannini S., Fantoni G., Toffoletti F., et al. Sex steroid modulation of neurohypophysial hormone receptors in human nonpregnant myometrium. J Clin Endocrinol Metab 1992; 74: 385–92. 10.1210/jc.74.2.385 CASPubMedWeb of Science®Google Scholar Wilson L., Jr, Dursans M T., Ouano L., Flouret G.. A new tocolytic agent; Development of oxytocin antagonist for inhibiting uterine contractions. Am J Obstet Gynecol 1990; 163: 195–202. 10.1016/S0002-9378(11)90698-X CASPubMedWeb of Science®Google Scholar Vaienzuela G J., Hewitt C W., Ducsay C A.. Endothelin-1 potentiates the in vitro contractile response of pregnant human myometrium to oxytocin. Am J Obstet Gynecol 1995; 172(5) 1573–6. 10.1016/0002-9378(95)90499-9 PubMedWeb of Science®Google Scholar Doualla-Bell Kotto Maka F., Breuiller-Fouche M., Geny B., Ferre F.. Prostaglandin F2α stimulates inositol phosphate production in human myometrium. Prostaglandins 1993; 45: 269–83. 10.1016/0090-6980(93)90052-9 PubMedWeb of Science®Google Scholar Alexandrova M., Soloff M S.. Oxytocin receptor and parturition. I. Control of oxytocin receptor concentration in the rat myometrium. Endocrinology 1980a; 106: 730–5. 10.1210/endo-106-3-730 CASPubMedWeb of Science®Google Scholar Seitchik J., Amico J., Robinson A G., Castillo M.. Oxytocin augmentation of dysfunctional labor. IV Oxytocin pharmacokinetics. Am J Obstet Gynecol 1984; 150: 225–8. 10.1016/S0002-9378(84)90355-7 CASPubMedWeb of Science®Google Scholar O'Driscoll K., Meagher D., Boylan P.. Active management of labor as an alternative to cesarean delivery for dystocia. Obstet Gynecol 1984; 63: 485–90. CASPubMedWeb of Science®Google Scholar Management of labor, W. Cohen, E A. Friedman. Pearl Press, Baltimore University. 1983. Google Scholar Calder A A., Embrey M P., Tait T.. Ripening of the cervix with extraamniotic prostaglandin E2 before induction of labour at term. Br J Obstet Gynaecol 1977; 84: 264. 10.1111/j.1471-0528.1977.tb12574.x CASPubMedWeb of Science®Google Scholar Wingerup L., Anderson K E., Ulmsten U.. Ripening the cervix and induction of labour in patients at term by single intracervical application of prostaglandin E2 in viscous gel. Acta Obstet Gynecol Scand Suppl 1979; 84: 15. 10.3109/00016347909156816 CASPubMedGoogle Scholar Ulmsten U., Wingerup L., Ekman G.. Local application of PGE2 for cervical ripening or induction of term labor. Clin Obstet Gynecol 1983; 26: 95–105. 10.1097/00003081-198303000-00013 CASPubMedGoogle Scholar Forman A., Ulmsten U., Banyai J., Wingerup L., Uldbjerg N.. Evidence for a local effect of intracervical prostaglandin E2-gel. Am J Obstet Gynecol 1982; 143: 756–60. 10.1016/0002-9378(82)90005-9 CASPubMedWeb of Science®Google Scholar Ekman G., Uldbjerg N., Ulmsten U.. Comparison of intravenous oxytocin and vaginal prostaglandin E2 gel in women with unripe cervices and premature rupture of the membranes. Obstet Gynecol Sep, 1985; 66(3) 307–10. Google Scholar Ekman G., Malmstroem A., Uldbjerg N., Ulmsten U.. Cervical collagen: an important regulator of cervical function in term labor. Obstet Gynecol 1986; 67: 633–6. 10.1097/00006250-198605000-00006 CASPubMedWeb of Science®Google Scholar Olson D M., Skinner K., Chains J R C.. Prostaglandin output in relation to parturition by cells dispersed from human intrauterine tissues. J Clin Endocrinol Metab 1983; 57: 694–9. 10.1210/jcem-57-4-694 CASPubMedWeb of Science®Google Scholar Challis J R G., Lye S J.. Parturition. The physiology of parturition, E. Konobil, J D. Neeil. Raven Press, New York 1994; vol 2: 958–1031. Google Scholar Challis J R G.. Steroid production by the fetal membranes in relation to the onset of parturition. The onset of labor: Cellular and integrative mechanisms, D. MacNellis, J RG Challis, P C. MacDonald, P W. Nathnielsz, J M. Roberts. Prenatology Press, Ithaca New York 1988; 233–46. Google Scholar Keirse M J M. C., Turnbull A C.. The fetal membrane as a possible source of amniotic fluid prostaglandins. Br J Obstet Gynaecol 1976; 83: 146–51. 10.1111/j.1471-0528.1976.tb00797.x CASPubMedWeb of Science®Google Scholar Breuiller-Fouche M., Doualla-Bell Kotto, et al. Alpha-1 adrenergic receptor binding and phosphoinositide breakdown in human myometrium. J Pharmacol Exp Ther 1991; 1: 258–82. Google Scholar Kelly R W., Illingworth P., Baldie G., Leask R., Brouwer S., Calder A A.. Progesterone control of interleukin-8 production in endometrium, and chorio-decidual cells underlines the role of the neutrophil in menstruation and parturition. Hum Reprod 1994b; 9: 253–8. CASPubMedWeb of Science®Google Scholar Uldbjerg N., Ulmsten U., Ekman G.. The ripening of the human uterine cervix in terms of connective tissue biochemistry. Clinical Obstetrics & Gynecology, K. Ueland, U. Ulmsten. Harper & Row, Inc, NY 1983; 26: 14–26. Google Scholar Uldbjerg N., Ekman G., Malmstroem A., Olsson K., Ulmsten U.. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans and collagenolytic activity. Am J Obstet Gynecol 1983; 147: 662–6. 10.1016/0002-9378(83)90446-5 CASPubMedWeb of Science®Google Scholar Stjernholm Y., Ekman Ordeberg G., Sahlin L., Elinder Marsk A., Eriksson H.. Cervical ripening in humans. Potential roles of estrogen, progesteron and IGF-1. Am J Obstet Gynecol 1996; 174: 1065–71. 10.1016/S0002-9378(96)70352-6 CASPubMedWeb of Science®Google Scholar Steer P J., Carter M C., Beard R W.. Normal levels of active contraction area in spontaneous labor. Br J Obstet Gynaecol 1984; 91: 211–19. Google Scholar Gee H., Taylor E W., Hancox C.. A model for the generation of intrauterine pressure in the human parturient uterus which demonstrates the critical role of the cervix. J Theor Biol 1988; 133: 281–91. 10.1016/S0022-5193(88)80322-9 CASPubMedWeb of Science®Google Scholar Danforth D N.. The fibrous nature of the human cervix, and its relation to the isthmic segment in gravid and nogravid uteri. 1947; 53: 541. Google Scholar Danforth D N.. The morphology of the human cervix. Clin Obstet Gynecol, K. Ueland, U. Ulmsten. Harper & Row, Inc Clin Obstet Gynecol, NY 1983; 26: 13. Google Scholar Liggins G C.. Cervical ripening as an inflammmatory process. The cervix in pregnancy and labor. Clinical and biochemical investigations, D A. Ellwood, A BM Anderson. Churchill-Livingstone, Edinburgh 1981; 1–12. Google Scholar Rath W., Adelman-Grill B C., Piepcr U., Kuhn W.. The role of collagenases and proteases in prostaglandin-induced cervical ripening. Prostaglandins 1987; 34: 119–27. 10.1016/0090-6980(87)90269-3 CASPubMedWeb of Science®Google Scholar Bryman I.. Contractile properties of the human uterine cervix. Doctoral Thesis, Gothenburg University. 1986. Google Scholar Norman M., Ekman G., Ulmsten U., Bachan K., Malmstroem A.. Proteoglycan metabolism in the connective tissue of pregnant and nonpregnant human cervix. Biochem J 1991; 275: 515–20. 10.1042/bj2750515 CASPubMedWeb of Science®Google Scholar Norman M., Ekman G., Malmstroem A., Ulmsten U.. Changed proteoglycan metabolism in human cervix immediately after spontaneous vaginal delivery. Obstet Gynecol 1993; 81: 217–23. PubMedWeb of Science®Google Scholar Wiquist J., Linde A.. Hormonal influence on glycosaminoglycan synthesis in uterine connective tissue of term pregnant women. Hum Reprod 1987; 2: 177–84. PubMedWeb of Science®Google Scholar Pinto R M., Rabow W., Votta R A.. Uterine cervix ripening in term pregnancy due to the action of estradiol-17β. A histological and histochemical study. Am J Obstet Gynecol 1965; 92: 319–24. 10.1016/0002-9378(65)90388-1 CASPubMedWeb of Science®Google Scholar MacLennan A H., Green R C., Bryant-Greenwood G E., Greenwood F C., Seamark R F.. Cervical ripening with combinations of vaginal prostaglandin E2, estradiol, and relaxin. Obstet Gynecol 1981; 58: 601–4. CASPubMedWeb of Science®Google Scholar Quinn M A., Murphy A J., Kuhn R J P.. A double-blind trial of extraamniotic oestriol and prostaglandin F2d gels in cervical ripening. Br J Obstet Gynaecol 1981; 88: 644–9. 10.1111/j.1471-0528.1981.tb01223.x CASPubMedWeb of Science®Google Scholar Anthony G S., Fisher J., Coutts J R T., Calder A A.. The effect of exogenous hormones on the resistance of the early pregnant human cervix. Br J Obstet Gynaecol 1984; 91: 1249–53. 10.1111/j.1471-0528.1984.tb04746.x CASPubMedWeb of Science®Google Scholar Rådestad A.. Softening of the human uterine cervix in early pregnancy. Doctoral Thesis, Karolinska Institutionen, Stockholm 1993. Google Scholar Downing S J., Sherwood O D.. The physiological role of relaxin in the pregnant rat IV. The influence of relaxin on cervical collagen and glycosaminoglycans. Endocrinology 1986; 118: 471–9. 10.1210/endo-118-2-471 CASPubMedWeb of Science®Google Scholar Osmers R., Rath W., Pflanz M A., et al. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol 1993; 81: 88–92. CASPubMedWeb of Science®Google Scholar Bokström H.. The human cervix mechanisms underlying ripening and dilatation. Doctoral thesis, University of Gothenburg. 1996. Google Scholar Friedman E A.. The functional divisions of labor. Am J Obstet Gynecol 1971; 109: 274–80. 10.1016/0002-9378(71)90875-1 CASPubMedWeb of Science®Google Scholar Pilpott R H., Castle W M.. Cervicographs in the management of labor in primigravidae. II. The action line and treatment of abnormal labour. Br J Obstet Gynaecol 1972; 79: 599–602. 10.1111/j.1471-0528.1972.tb14208.x Google Scholar Studd J W W., Cardozo L D., Gibb D M F.. The management of spontaneous labor. Progress in Obstetrics & Gynecology. Churchill Livingstone, London 1982; Vol 2: 60–72. Google Scholar Hendricks C H., Brenner W E., Kraus S.. Normal cervical dilatation pattern in late pregnancy and labor. Am J Obstet Gynecol 1970; 10: 1065–82. Google Scholar Schifrin B S., Cohen W R.. Labor's dysfunctional lexicon. Obstet Gynecol 1989; 74: 121–4. CASPubMedWeb of Science®Google Scholar Bidgood K A., Steer P J.. A randomized control study of oxytocin augmentation of labour. 1. Obstetric outcome. Br J Obstet Gynaecol 1987; 94: 512–17. 10.1111/j.1471-0528.1987.tb03142.x CASPubMedWeb of Science®Google Scholar Rossavik G.. Relation between total uterine impulse, method of delivery and one-minute Apgar Score. Br J Obstet Gynaecol 1978; 85: 847–51. 10.1111/j.1471-0528.1978.tb15841.x CASPubMedWeb of Science®Google Scholar Cunningham F G., MacDonald P C., Gant N F.. Physiology of Labour. William's Obstetrics18th ed. Appleton & Lange, East Nor-walk, CT 1989; 341–8. Web of Science®Google Scholar Granström I., Ekman G., Ulmsten U., Malmstroem A.. Changes in connective tissue of corpus and cervix uteri during ripening and labor in term pregnancy. Br J Obstet Gynaecol 1989; 96: 1198–202. 10.1111/j.1471-0528.1989.tb03196.x CASPubMedWeb of Science®Google Scholar Granström L., Ekman G., Malmström A., Ulmsten U.. Insufficient remodelling of the uterine connective tissue in women with protracted labour. Br J Obstet Gynaecol 1991; 98: 1212–16. 10.1111/j.1471-0528.1991.tb15391.x CASPubMedWeb of Science®Google Scholar Granström L., Ekman G., Malmström A., Ulmsten U., Fittkow S., Szeverényi M., et al. Collagenase activity in the cervix of non-pregnant and pregnant women. Arch Gynecol Obstet 1990; 248: 75–80. 10.1007/BF02389578 PubMedWeb of Science®Google Scholar Serman F., Benavides C., Sandoval J., Pazols R., Bermedo J., Fuenzaldia R., et al. Active labor management in primiparas. Prospective study. Rev Chil Obstet Ginecol 1995; 60: 6–10. PubMedGoogle Scholar Olah K S., Gee H.. The active mismanagement of labour. Br J Obstet Gynaecol 1996; 103: 729–31. 10.1111/j.1471-0528.1996.tb09863.x CASPubMedWeb of Science®Google Scholar Maloni F D., Geary M., Chelmow D., Stronge J., Bylan P., D'Alton M E.. Prolonged labor in nulliparas: Lessons from the active management of labor. Obstet Gynecol 1996; 88: 211–15. 10.1016/0029-7844(96)00185-8 PubMedWeb of Science®Google Scholar Leak R D., Weitzman R E., Glatz T H., Fisher D A.. Plasma oxytocin concentrations in men, nonpregnant women, and pregnant women before and during spontaneous labor. J Clin Endocrinol Metab 1981; 53: 730–3. 10.1210/jcem-53-4-730 PubMedWeb of Science®Google Scholar Gillespie A., Brummer A., Chard T.. Oxytocin release by infused prostaglandin. Br Med J 1972; 1: 543–4. 10.1136/bmj.1.5799.543 CASPubMedWeb of Science®Google Scholar Fuchs A R., Fuchs F., Husslein P., Soloff M S., Fernstrom M.. Oxytocin receptor and human parturition: A dual role for oxytocin in the initiation of labor. Science 1982; 215: 1396–8. 10.1126/science.6278592 CASPubMedWeb of Science®Google Scholar Romero R., Soccia B., Mazor M., Wu Y K., Benveniste R.. Evidence for a local change in the progesterone/estrogen ratio in human parturition at term. Am J Obstet Gynecol 1988; 159: 657–60. 10.1016/S0002-9378(88)80029-2 CASPubMedWeb of Science®Google Scholar Gray H N., Bäckström T., Ulmsten U., Roomans G M.. Steroid hormone effects on intracellular communication between the pregnant human myometrial cells before labor. Biol Reprod 1996; 55: 379–85. 10.1095/biolreprod55.2.379 PubMedWeb of Science®Google Scholar Cole W C., Garfield R E.. Evidence for physiological regulation of gap junction permeability. Am J Physiol 1986; 251: C411–20. 10.1152/ajpcell.1986.251.3.C411 CASPubMedWeb of Science®Google Scholar Citing Literature Volume76, Issue6June 1997Pages 499-514 ReferencesRelatedInformation

Referência(s)