Artigo Acesso aberto Revisado por pares

Effect on parasite eradication ofPneumocystis carinii-specific antibodies produced in the presence or absence of CD4+ α β T lymphocytes

1999; Wiley; Volume: 29; Issue: 8 Linguagem: Inglês

10.1002/(sici)1521-4141(199908)29

ISSN

1521-4141

Autores

Ralph Hanano, Stefan H. E. Kaufmann,

Tópico(s)

Drug-Induced Adverse Reactions

Resumo

European Journal of ImmunologyVolume 29, Issue 8 p. 2464-2475 ArticleFree Access Effect on parasite eradication of Pneumocystis carinii-specific antibodies produced in the presence or absence of CD4+ α β T lymphocytes Ralph Hanano, Ralph Hanano Department of Immunology, University Clinics Ulm, Ulm, GermanySearch for more papers by this authorStefan H. E. Kaufmann, Corresponding Author Stefan H. E. Kaufmann [email protected] Department of Immunology, University Clinics Ulm, Ulm, Germany Max-Planck-Institute for Infection Biology, Berlin, GermanyMax-Planck-Institute for Infection Biology, Monbijoustr. 2, D-10117 Berlin, Germany Fax: +49-30-2802-6212Search for more papers by this author Ralph Hanano, Ralph Hanano Department of Immunology, University Clinics Ulm, Ulm, GermanySearch for more papers by this authorStefan H. E. Kaufmann, Corresponding Author Stefan H. E. Kaufmann [email protected] Department of Immunology, University Clinics Ulm, Ulm, Germany Max-Planck-Institute for Infection Biology, Berlin, GermanyMax-Planck-Institute for Infection Biology, Monbijoustr. 2, D-10117 Berlin, Germany Fax: +49-30-2802-6212Search for more papers by this author First published: 28 March 2006 https://doi.org/10.1002/(SICI)1521-4141(199908)29:08 3.0.CO;2-FCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The contribution of specific antibodies (Ab) to successful clearance of Pneumocystis carinii from host pulmonary tissues has received increasing attention. Sera collected from diseased recombinase-activating gene (RAG)-1–/–, TCRβxδ–/–, TCRβ–/– and Aβ–/– mutants as well as from aerogenic parasite-exposed (aero) and intranasally (i. n.) infected C57BL/6 mice were transferred to RAG-1–/– mutants inoculated with freshly isolated parasites. All sera, except for RAG-1–/– serum, contained P. carinii-specific Ab of varying isotype concentrations. Four weeks after serum treatment pulmonary parasite numbers were reduced slightly by Aβ–/– and C57BL/6-aero sera, and markedly by TCRβ–/– and C57BL/6-i. n. sera. Our data reveal: (1) T cells are essential, and CD4+ T cells are important for formation of protective Ab; (2) at least in the absence of α β T cells, γ δ T cells provide help for protective Ab. In vitro treatment of bronchoalveolar lavage cells with the different sera largely led to comparable results. Opsonizing Ab impeding parasite attachment to host cells, as well as Ab possibly neutralizing parasite-secreted products were implicated. Furthermore, serum components other than Abappear to participate in resistance to fungal manifestation. Reference 1 Mills, J., Pneumocystis carinii and Toxoplasma gondii infections in patients with AIDS. Rev. Infect. Dis. 1986. 8: 1001– 1011. 2 Shellito, J., Suzara, V. V., Blumenfeld, W., Beck, J. M., Steger, H. J. and Ermak, T. H., A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes. J. Clin. Invest. 1990. 85: 1686– 1693. 3 Harmsen, A. G. and Stankiewicz, M., Requirement for CD4+ cells in resistance to Pneumocystis carinii pneumonia in mice. J. Exp. Med. 1990. 172: 937– 945. 4 Roths, J. B. and Sidman, C. L., Both immunity and hyperresponsiveness to Pneumocystis carinii results from transfer of CD4+ but not CD8+ T cells into severe combined immunodeficiency mice. J. Clin. Invest. 1992. 90: 673– 678. 5 Hanano, R. and Kaufmann, S. H. E., Pneumocystis carinii and the immune response in disease. Trends Microbiol. 1998. 6: 71– 75. 6 Marcotte, H., Levesque, D., Delanay, K., Bourgeault, A., Durantaye, R. D., Brochu, S. and Lavoie, M. C., Pneumocystis carinii infection in transgenic B cell-deficient mice. J. Infect. Dis. 1996. 173: 1034– 1037. 7 Epstein, M. M., Di Rosa, F., Jankovic, D., Sher, A. and Matzinger, P., Successful T cell priming in B cell-deficient mice. J. Exp. Med. 1995. 182: 915– 922. 8 Roths, J. B. and Sidman, C. L., Single and combined humoral and cell-mediated immunotherapy of Pneumocystis carinii pneumonia in immunodeficient scid mice. Infect. Immun. 1993. 61: 1641– 1649. 9 Gigliotti, R., Garvy, B. A. and Harmsen, A. G., Antibody-mediated shift in the profile of glycoprotein A phenotypes observed in a mouse model of Pneumocystis carinii pneumonia. Infect. Immun. 1996. 64: 1892– 1899. 10 Gigliotti, F. and Hughes, W. T., Passive immunoprophylaxis with specific mAb confers partial protection against Pneumocystis carinii pneumonia in animal models. J. Clin. Invest. 1988. 81: 1666– 1668. 11 Hanano, R. and Kaufmann, S. H. E., Pneumocystis carinii pneumonia in mutant mice deficient in both TCRαβ and TCRγδ cells: cytokine and antibody responses. J. Infect. Dis. 1999. 179: 455– 459. 12 Harmsen, A. G., Chen, W. and Gigliotti, F., Active immunity to Pneumocystis carinii reinfection in T cell depleted mice. Infect. Immun. 1995. 63: 2391– 2395. 13 Hanano, R., Reifenberg, K. and Kaufmann, S. H. E., Naturally acquired Pneumocystis carinii pneumonia in gene disruption mutant mice: Role of distinct T cell populations in infection. Infect. Immun. 1996. 64: 3201– 3209. 14 Furuta, T., Ueda, K., Kyuwa, S. and Fujiwara, K., Effect of T cell transfer on Pneumocystis carinii infection in nude mice. Jpn. J. Exp. Med. 1984. 54: 59– 64. 15 Graves, D. C., Immunological studies of Pneumocystis carinii. J. Protozool. 1989. 36: 60– 69. 16 Walzer, P. D., Stanforth, D., Linke, M. J. and Cushion, M. T., Pneumocystis carinii: Immunoblotting and immunofluorescent analysis of serum antibodies during experimental infection and recovery. Exp. Parasitol. 1987. 63: 319– 328. 17 Horner, A. A., Jabara, H., Ramesh, N. and Geha, R. S., γδ T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J. Exp. Med. 1995. 181: 1239– 1244. 18 Snapper, C. M. and Mond, J. J., Towards a comprehensive view of immunoglobulin class switching. Immunol. Today 1993. 14: 15– 17. 19 Snapper, C. M., Marcu, K. B. and Zelazowski, P., The immunoglobulin class switch: beyond "accessibility". Immunity 1997. 6: 217– 223. 20 Hanano, R., Reifenberg, K. and Kaufmann, S. H. E., Activated pulmonary macrophages are insufficient for resistant against Pneumocystis carinii. Infect. Immun. 1998. 66: 305– 314. 21 Garvy, B. A., Wiley, J. A., Gigliotti, F. and Harmsen, A. G., Protection against Pneumocystis carinii pneumonia by antibodies generated from either T helper 1 or T helper 2 responses. Infect. Immunol. 1997. 65: 5052– 5056. 22 Theus, S. A., Andrews, R. P., Steele, P. and Walzer, P. D., Adoptive transfer of lymphocytes sensitized to the major surface glycoprotein of Pneumocystis carinii confers protection in the rat. J. Clin. Invest. 1995. 95: 2587– 2593. 23 Hanano, R. and Kaufmann, S. H. E., Immune responses to naturally acquired Pneumocystis carinii in gene disruption mutant mice. Res. Immunol. 1998. 149: 429– 435. 24 Walzer, P. D., Attachment of microbes to host cells: Relevance of Pneumocystis carinii. Lab. Invest. 1986. 54: 589– 592. 25 Martin, W. J., Pathogenesis of Pneumocystis carinii pneumonia. Am. J. Respir. Cell Mol. Biol. 1993. 8: 356– 357. 26 Crestani, B., Cornillet, P., Dehoux, M., Rolland, C., Guenounou, M. and Aubier, M., Alveolar type II epithelial cells produce IL-6 in vitro and in vivo. Regulation by alveolar macrophage secretory products. J. Clin. Invest. 1994. 94: 731– 740. 27 Pesanti, E. L., Interaction of Pneumocystis carinii with secretions of alveolar macrophages and type II epithelial cells. J. Protozool. 1991. 38: 47S– 49S. 28 Heiss, L. N., Lancaster, J. R. J., Corbett, J. A. and Goldman, W. E., Epithelial autotoxicity of NO: role in the resiratory cytopathology of pertussis. Proc. Natl. Acad. Sci. USA 1994. 91: 267– 270. 29 Magnan, A., Frachon, I., Rain, B., Peuchmaur, M., Monti, G., Lenot, B., Fattal, M., Simonneau, G., Galanaud, P. and Emilie, D., TGF-β in normal human lung: preferential location in bronchial epithelial cells. Thorax 1994. 49: 789– 792. 30 Masur, H. and Jones, T. C., The interaction in vitro of Pneumocystis carinii with macrophages and L-cells. J. Exp. Med. 1978. 147: 157– 170. 31 Taylor, M. B., Phillips, M. and Easmon, C. S. F., Opso-nophagocytosis of Pneumocystis carinii. J. Med. Microbiol. 1992. 36: 223– 228. 32 Pottratz, S. T., Weir, A. L. and Wisniowski, P. E., Pneumocystis carinii attachment increases expression of fibronectin-binding integrins on cultured lung cells. Infect. Immun. 1994. 62: 5464– 5469. 33 Limper, A. H., Standing, J. E., Hoffman, O. A., Castro, M. and Neese, L. W., Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect. Immun. 1993. 61: 4302– 4309. 34 Long, E. G., Smith, J. S. and Meier, J. L., Attachment of Pneumocystis carinii to rat pneumocytes. Lab. Invest. 1986. 54: 609– 615. 35 Pottratz, S. T. and Martin, II W. J., Mechanisms of Pneumocystis carinii attachment to cultured rat alveolar macrophages. J. Clin. Invest. 1990. 86: 1678– 1683. 36 Sukura, A., Konttinen, Y. T., Sepper, R., Kaartinen, L., Sorsa, T. and Lindberg, L.-A., Collagenases and the serine proteinases elastase and cathepsin G in steroid-induced Pneumocystis carinii pneumonia. J. Clin. Microbiol. 1995. 33: 829– 834. 37 Limper, A. H. and Martin, II W. J., Pneumocystis carinii: Inhibition of lung cell growth mediated by parasite attachment. J. Clin. Invest. 1990. 85: 391– 396. 38 Peeters, C. C., Tenbergen-Meekes, A. M., Poolman, J. T., Beurret, M., Zegers, B. J. and Rijkers, G. T., Effect of carrier priming on immunogenicity of saccharide-protein conjugate vaccines. Infect. Immun. 1991. 59: 3504– 3510. 39 Seppala, I., Pelkonen, J. and Makela, O., Isotypes of antibodies induced by plain dextran or a dextran-protein conjugate. Eur. J. Immunol. 1985. 15: 827– 833. 40 Gray, J. D. and Horwitz, D. A., Activated human NK cells can stimulate resting B cells to secrete immunoglobulin. J. Immunol. 1995. 154: 5656– 5664. 41 Snapper, C. M., Yamaguchi, H., Moorman, M. A. and Mond, J. J., An in vitro model for T cell-independent induction of humoral immunity: a requirement for NK cells. J. Immunol. 1994. 152: 4884– 4892. 42 Wilder, J. A., Koh, C. Y. and Yuan, D., The role of NK cells during in vivo antigen-specific antibody responses. J. Immunol. 1996. 156: 146– 152. 43 Cronin, II D. C., Stack, R. and Fitch, F. W., IL-4-producing CD8+ T cell clones can provide B cell help. J. Immunol. 1995. 154: 3118– 3127. 44 Casadevall, A., Antibody-mediated protection against intracellular pathogens. Trends. Microbiol. 1998. 6: 102– 107. 45 Wakefield, A. E., Pixley, F. J., Banerji, S., Sinclair, K., Miller, R. F., Moxon, E. R. and Hopkin, J. M., Detection of Pneumocystis carinii with DNA amplification. Lancet 1990. 336: 451– 453. Citing Literature Volume29, Issue8August 1999Pages 2464-2475 ReferencesRelatedInformation

Referência(s)