Revisão Acesso aberto Revisado por pares

Apoptosome Structure, Assembly, and Procaspase Activation

2013; Elsevier BV; Volume: 21; Issue: 4 Linguagem: Inglês

10.1016/j.str.2013.02.024

ISSN

1878-4186

Autores

Shujun Yuan, Christopher W. Akey,

Tópico(s)

Phagocytosis and Immune Regulation

Resumo

Apaf-1-like molecules assemble into a ring-like platform known as the apoptosome. This cell death platform then activates procaspases in the intrinsic cell death pathway. In this review, crystal structures of Apaf-1 monomers and CED-4 dimers have been combined with apoptosome structures to provide insights into the assembly of cell death platforms in humans, nematodes, and flies. In humans, the caspase recognition domains (CARDs) of procaspase-9 and Apaf-1 interact with each other to form a CARD-CARD disk, which interacts with the platform to create an asymmetric proteolysis machine. The disk tethers multiple pc-9 catalytic domains to the platform to raise their local concentration, and this leads to zymogen activation. These findings have now set the stage for further studies of this critical activation process on the apoptosome. Apaf-1-like molecules assemble into a ring-like platform known as the apoptosome. This cell death platform then activates procaspases in the intrinsic cell death pathway. In this review, crystal structures of Apaf-1 monomers and CED-4 dimers have been combined with apoptosome structures to provide insights into the assembly of cell death platforms in humans, nematodes, and flies. In humans, the caspase recognition domains (CARDs) of procaspase-9 and Apaf-1 interact with each other to form a CARD-CARD disk, which interacts with the platform to create an asymmetric proteolysis machine. The disk tethers multiple pc-9 catalytic domains to the platform to raise their local concentration, and this leads to zymogen activation. These findings have now set the stage for further studies of this critical activation process on the apoptosome. Apoptotic protease activation factor-1 resides in the cytoplasm of healthy cells as an inactive monomer (Liu et al., 1996Liu X. Kim C.N. Yang J. Jemmerson R. Wang X. Induction of apoptotic program in cell free extracts: requirement for dATP and cytochrome c.Cell. 1996; 86: 147-157Abstract Full Text Full Text PDF PubMed Scopus (4457) Google Scholar; Li et al., 1997Li P. Nijhawan D. Budihardjo I. Srinivasula S.M. Ahmad M. Alnemri E.S. Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade.Cell. 1997; 91: 479-489Abstract Full Text Full Text PDF PubMed Scopus (6218) Google Scholar). Appropriate stimuli trigger Apaf-1 monomers to assemble into a large ring-like platform that activates procaspases in the intrinsic cell death pathway (reviewed by Bratton and Salvesen, 2010Bratton S.B. Salvesen G.S. Regulation of the Apaf-1-caspase-9 apoptosome.J. Cell Sci. 2010; 123: 3209-3214Crossref PubMed Scopus (301) Google Scholar; see Zou et al., 1999Zou H. Li Y. Liu X. Wang X. An Apaf-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9.J. Biol. Chem. 1999; 274: 11549-11556Crossref PubMed Scopus (1792) Google Scholar, Zou et al., 1997Zou H. Henzel W.J. Liu X. Lutschg A. Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c dependent activation of caspase-3.Cell. 1997; 90: 405-413Abstract Full Text Full Text PDF PubMed Scopus (2739) Google Scholar; Rodriguez and Lazebnik, 1999Rodriguez J. Lazebnik Y. Caspase-9 and Apaf-1 form an active holoenzyme.Genes Dev. 1999; 13: 3179-3184Crossref PubMed Scopus (458) Google Scholar; Hu et al., 1999Hu Y. Benedict M.A. Ding L. Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1 mediated caspase-9 activation and apoptosis.EMBO J. 1999; 18: 3586-3595Crossref PubMed Scopus (409) Google Scholar; Srinivasula et al., 1998Srinivasula S.M. Ahmad M. Fernandes-Alnemri T. Alnemri E.S. Autoactivation of procaspase-9 by Apaf-1 mediated oligomerization.Mol. Cell. 1998; 1: 949-957Abstract Full Text Full Text PDF PubMed Scopus (963) Google Scholar). Proapoptotic stimuli may include developmental cues, growth factor withdrawal, DNA damage, and oncogene activation. Apoptosome assembly is required for the activation of apical or initiator procaspases (Yan and Shi, 2005Yan N. Shi Y. Mechanisms of apoptosis through structural biology.Annu. Rev. Cell Dev. Biol. 2005; 21: 35-56Crossref PubMed Scopus (166) Google Scholar), which clip and activate executioner procaspase dimers such as pc-3 or pc-7. The activated caspases then target cellular proteins for proteolysis in a process that kills the cell. The controlled termination of unwanted or dangerous cells allows the organism to recycle cellular components without activating inflammation pathways (Green and Evan, 2002Green D.R. Evan G.I. A matter of life and death.Cancer Cell. 2002; 1: 19-30Abstract Full Text Full Text PDF PubMed Scopus (901) Google Scholar; Inohara and Nuñez, 2003Inohara N. Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis.Nat. Rev. Immunol. 2003; 3: 371-382Crossref PubMed Scopus (861) Google Scholar); hence, programmed cell death is important for human health. For example, apoptotic pathways in cells affected by cancer and autoimmunity diseases are often downregulated (Song and Steller, 1999Song Z. Steller H. Death by design: mechanism and control of apoptosis.Trends Cell Biol. 1999; 12: 49-52Abstract Full Text Full Text PDF Scopus (108) Google Scholar; Salvesen and Dixit, 1997Salvesen G.S. Dixit V.M. Caspases: intracellular signaling by proteolysis.Cell. 1997; 91: 443-446Abstract Full Text Full Text PDF PubMed Scopus (1936) Google Scholar; Green and Evan, 2002Green D.R. Evan G.I. A matter of life and death.Cancer Cell. 2002; 1: 19-30Abstract Full Text Full Text PDF PubMed Scopus (901) Google Scholar), whereas cell death may be accelerated in AIDS, ischemic stroke, and neurodegeneration (Danial and Korsmeyer, 2004Danial N.N. Korsmeyer S.J. Cell death: critical control points.Cell. 2004; 116: 205-219Abstract Full Text Full Text PDF PubMed Scopus (4024) Google Scholar; Thompson, 1995Thompson C.B. Apoptosis in the pathogenesis and treatment of disease.Science. 1995; 267: 1456-1462Crossref PubMed Scopus (6186) Google Scholar). A side-by-side comparison of intrinsic cell death pathways in different “benchmark” metazoans can provide insights into conserved aspects of the molecular machinery while highlighting mechanistic differences (Danial and Korsmeyer, 2004Danial N.N. Korsmeyer S.J. Cell death: critical control points.Cell. 2004; 116: 205-219Abstract Full Text Full Text PDF PubMed Scopus (4024) Google Scholar; Figure 1). In Caenorhabditis elegans, lateral dimers of CED-4 are released from a complex with CED-9 by EGL-1. Four CED-4 dimers then assemble into an apoptosome with quasi eight-fold rotational symmetry (Figure 1, left; Wu et al., 1997Wu D. Wallen H.D. Inohara N. Nuñez G. Interaction and regulation of the Caenorhabditis elegans death protease CED-3 by CED-4 and CED-9.J. Biol. Chem. 1997; 272: 21449-21454Crossref PubMed Scopus (112) Google Scholar; Conradt and Horvitz, 1998Conradt B. Horvitz H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9.Cell. 1998; 93: 519-529Abstract Full Text Full Text PDF PubMed Scopus (511) Google Scholar; del Peso et al., 1998del Peso L. González V.M. Núñez G. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation.J. Biol. Chem. 1998; 273: 33495-33500Crossref PubMed Scopus (88) Google Scholar; Yan et al., 2004Yan N. Wu J.W. Chai J. Li W. Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim.Nat. Struct. Mol. Biol. 2004; 11: 420-428Crossref PubMed Scopus (87) Google Scholar). The CED-4 apoptosome binds and activates CED-3, the only procaspase in nematodes, in a step mediated by homotypic interactions between caspase recognition domains (CARDs) located at the N termini of CED-3 and CED-4 (Yang et al., 1998Yang X. Chang H.Y. Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis.Science. 1998; 281: 1355-1357Crossref PubMed Scopus (235) Google Scholar; Seshagiri and Miller, 1997Seshagiri S. Miller L.K. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis.Curr. Biol. 1997; 7: 455-460Abstract Full Text Full Text PDF PubMed Google Scholar). Intriguingly, CED-3 without the N-terminal CARD was reported to bind to the underside of the CED-4 apoptosome, resulting in a 5- to 10-fold increase in the proteolytic activity of CED-3 (Qi et al., 2010Qi S. Pang Y. Hu Q. Liu Q. Li H. Zhou Y. He T. Liang Q. Liu Y. Yuan X. et al.Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4.Cell. 2010; 141: 446-457Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar). However, the relevance of this observation is not clear given the absence of bona fide CARD-CARD interactions between the procaspase and CED-4. In humans, cytochrome c is released from binding sites on the inner mitochondrial membrane that contain cardiolipin molecules (reviewed in Gonzalvez and Gottlieb, 2007Gonzalvez F. Gottlieb E. Cardiolipin: setting the beat of apoptosis.Apoptosis. 2007; 12: 877-885Crossref PubMed Scopus (238) Google Scholar). In response to the appropriate signals, proapoptotic Bcl-2 family members are thought to form pores in the outer mitochrondrial membrane through which cytochrome c and other protein effectors flow into the cytoplasm (reviewed in Brunelle and Letai, 2009Brunelle J.K. Letai A. Control of mitochondrial apoptosis by the Bcl-2 family.J. Cell Sci. 2009; 122: 437-441Crossref PubMed Scopus (722) Google Scholar; Tait and Green, 2010Tait S.W. Green D.R. Mitochondria and cell death: outer membrane permeabilization and beyond.Nat. Rev. Mol. Cell Biol. 2010; 11: 621-632Crossref PubMed Scopus (1843) Google Scholar) Cytochrome c then binds to β-propellers in Apaf-1 to trigger nucleotide exchange and stepwise assembly of a heptameric apoptosome (Figure 1, middle; Hu et al., 1999Hu Y. Benedict M.A. Ding L. Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1 mediated caspase-9 activation and apoptosis.EMBO J. 1999; 18: 3586-3595Crossref PubMed Scopus (409) Google Scholar; Zou et al., 1999Zou H. Li Y. Liu X. Wang X. An Apaf-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9.J. Biol. Chem. 1999; 274: 11549-11556Crossref PubMed Scopus (1792) Google Scholar). Multiple copies of pc-9 then bind to the Apaf-1 ring to form the holo-apoptosome (Malladi et al., 2009Malladi S. Challa-Malladi M. Fearnhead H.O. Bratton S.B. The Apaf-1∗procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer.EMBO J. 2009; 28: 1916-1925Crossref PubMed Scopus (99) Google Scholar). However, this scenario may be an oversimplification, because pc-9 stimulates nucleotide exchange during Apaf-1 assembly (Jiang and Wang, 2000Jiang X. Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1.J. Biol. Chem. 2000; 275: 31199-31203Crossref PubMed Scopus (414) Google Scholar). Thus, ternary complexes comprised of Apaf-1, cytochrome c, and pc-9 could form the holo-apoptosome directly. In either case, this process leads to pc-9 activation on the apoptosome. The proteolytically active complex then cleaves loops in pc-3 and pc-7 to create active caspases that execute the death program (reviewed in Riedl and Shi, 2004Riedl S.J. Shi Y. Molecular mechanisms of caspase regulation during apoptosis.Nat. Rev. Mol. Cell Biol. 2004; 5: 897-907Crossref PubMed Scopus (1567) Google Scholar). Inhibitors of apoptosis (IAPs), such as XIAP, are modular proteins that contain ∼70 residue Baculovirus IAP Repeat (BIR) domains that inhibit procaspases. In XIAP, the BIR3 domain interacts with the clipped p20-p10 linker of processed pc-9 (Shiozaki et al., 2003Shiozaki E.N. Chai J. Rigotti D.J. Riedl S.J. Li P. Srinivasula S.M. Alnemri E.S. Fairman R. Shi Y. Mechanism of XIAP-mediated inhibition of caspase-9.Mol. Cell. 2003; 11: 519-527Abstract Full Text Full Text PDF PubMed Scopus (573) Google Scholar), whereas the linker between BIR1 and BIR2 interacts with the active site of caspase-3 (Riedl et al., 2001Riedl S.J. Renatus M. Schwarzenbacher R. Zhou Q. Sun C. Fesik S.W. Liddington R.C. Salvesen G.S. Structural basis for the inhibition of caspase-3 by XIAP.Cell. 2001; 104: 791-800Abstract Full Text Full Text PDF PubMed Scopus (656) Google Scholar, Fesik and Shi, 2001Fesik S.W. Shi Y. Structural biology. Controlling the caspases.Science. 2001; 294: 1477-1478Crossref PubMed Scopus (139) Google Scholar). Downregulation of pc-9 and caspase-3 by IAPs is blocked by proapoptotic factors, such as Smac/DIABLO and Omi/HtrA2, that are released from mitochondria along with cytochrome c. These factors interact with their target BIR domains to ensure upregulation of the proapoptotic pathway (Srinivasula et al., 2001Srinivasula S.M. Saleh A. Hedge R. Datta P. Shiozaki E. Chai J. Robbins P.D. Fernandes-Alnemri T. Shi Y. Alnemri E.S. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis.Nature. 2001; 410: 112-116Crossref PubMed Scopus (859) Google Scholar, Tait and Green, 2010Tait S.W. Green D.R. Mitochondria and cell death: outer membrane permeabilization and beyond.Nat. Rev. Mol. Cell Biol. 2010; 11: 621-632Crossref PubMed Scopus (1843) Google Scholar). In Drosophila, an Apaf-1-related killer (Ark/Dark; Rodriguez et al., 1999Rodriguez A. Oliver H. Zou H. Chen P. Wang X. Abrams J.M. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway.Nat. Cell Biol. 1999; 1: 272-279Crossref PubMed Scopus (293) Google Scholar; Zhou et al., 1999Zhou L. Song Z. Tittel J. Steller H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis.Mol. Cell. 1999; 4: 745-755Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar; Kanuka et al., 1999Kanuka H. Sawamoto K. Inohara N. Matsuno K. Okano H. Miura M. Control of the cell death pathway by Dapaf-1 a Drosophila Apaf-1/CED-4 related caspase activator.Mol. Cell. 1999; 4: 757-769Abstract Full Text Full Text PDF PubMed Scopus (213) Google Scholar) assembles into an octameric apoptosome (Yu et al., 2006Yu X. Wang L. Acehan D. Wang X. Akey C.W. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer.J. Mol. Biol. 2006; 355: 577-589Crossref PubMed Scopus (114) Google Scholar; Yuan et al., 2011aYuan S. Yu X. Topf M. Dorstyn L. Kumar S. Ludtke S.J. Akey C.W. Structure of the Drosophila apoptosome at 6.9Å resolution.Structure. 2011; 19: 128-140Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar; Figure 1, right). Although cytochrome c may not be required for procaspase activation in flies (Dorstyn et al., 2002Dorstyn L. Read S. Cakouros D. Huh J.R. Hay B.A. Kumar S. The role of cytochrome c in caspase activation in Drosophila melanogaster cells.J. Cell Biol. 2002; 156: 1089-1098Crossref PubMed Scopus (162) Google Scholar, Dorstyn et al., 2004Dorstyn L. Mills K. Lazebnik Y. Kumar S. The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells.J. Cell Biol. 2004; 167: 405-410Crossref PubMed Scopus (99) Google Scholar; Dorstyn and Kumar, 2008Dorstyn L. Kumar S. A biochemical analysis of the activation of the Drosophila caspase DRONC.Cell Death Differ. 2008; 15: 461-470Crossref PubMed Scopus (48) Google Scholar), a role for cytochrome c has been demonstrated in certain tissues (Arama et al., 2006Arama E. Bader M. Srivastava M. Bergmann A. Steller H. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation.EMBO J. 2006; 25: 232-243Crossref PubMed Scopus (107) Google Scholar; Mendes et al., 2006Mendes C.S. Arama E. Brown S. Scherr H. Srivastava M. Bergmann A. Steller H. Mollereau B. Cytochrome c-d regulates developmental apoptosis in the Drosophila retina.EMBO Rep. 2006; 7: 933-939Crossref PubMed Scopus (66) Google Scholar; Kornbluth and White, 2005Kornbluth S. White K. Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm).J. Cell Sci. 2005; 118: 1779-1787Crossref PubMed Scopus (157) Google Scholar). Dark forms a stable double ring and does not bind mammalian cytochrome c under in vitro conditions (Yu et al., 2006Yu X. Wang L. Acehan D. Wang X. Akey C.W. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer.J. Mol. Biol. 2006; 355: 577-589Crossref PubMed Scopus (114) Google Scholar). Coassembly of Dark with Dronc, the initiator procaspase (Dorstyn et al., 1999Dorstyn L. Colussi P.A. Quinn L.M. Richardson H. Kumar S. DRONC, an ecdysone-inducible Drosophila caspase.Proc. Natl. Acad. Sci. USA. 1999; 96: 4307-4312Crossref PubMed Scopus (239) Google Scholar), leads to the formation of a single-ring apoptosome that activates DrICE, the executioner procaspase (Yuan et al., 2011aYuan S. Yu X. Topf M. Dorstyn L. Kumar S. Ludtke S.J. Akey C.W. Structure of the Drosophila apoptosome at 6.9Å resolution.Structure. 2011; 19: 128-140Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). The Dark apoptosome is essential for stress-induced apoptosis and may account for most of the developmentally regulated cell death that occurs in flies (Rodriguez et al., 1999Rodriguez A. Oliver H. Zou H. Chen P. Wang X. Abrams J.M. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway.Nat. Cell Biol. 1999; 1: 272-279Crossref PubMed Scopus (293) Google Scholar; Zhou et al., 1999Zhou L. Song Z. Tittel J. Steller H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis.Mol. Cell. 1999; 4: 745-755Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar; Kanuka et al., 1999Kanuka H. Sawamoto K. Inohara N. Matsuno K. Okano H. Miura M. Control of the cell death pathway by Dapaf-1 a Drosophila Apaf-1/CED-4 related caspase activator.Mol. Cell. 1999; 4: 757-769Abstract Full Text Full Text PDF PubMed Scopus (213) Google Scholar; Mills et al., 2006Mills K. Daish T. Harvey K.F. Pfleger C.M. Hariharan I.K. Kumar S. The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death.J. Cell Biol. 2006; 172: 809-815Crossref PubMed Scopus (60) Google Scholar; Srivastava et al., 2007Srivastava M. Scherr H. Lackey M. Xu D. Chen Z. Lu J. Bergmann A. ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity.Cell Death Differ. 2007; 14: 92-102Crossref PubMed Scopus (49) Google Scholar; Chew et al., 2004Chew S.K. Akdemir F. Chen P. Lu W.J. Mills K. Daish T. Kumar S. Rodriguez A. Abrams J.M. The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila.Dev. Cell. 2004; 7: 897-907Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar; Daish et al., 2004Daish T.J. Mills K. Kumar S. Drosophila caspase Dronc is required for specific developmental cell death pathways and stress-induced apoptosis.Dev. Cell. 2004; 7: 909-915Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar). The absence of an activator in Dark assembly suggests that inhibitors of apoptosis may play a more prominent role in regulating cell death in flies (Figure 1). For example, the BIR2 domain of Drosophila IAP-1 interacts with a 12 residue linker in Dronc to block activation (Chai et al., 2003Chai J. Yan N. Huh J.R. Wu J.W. Li W. Hay B.A. Shi Y. Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination.Nat. Struct. Biol. 2003; 10: 892-898Crossref PubMed Scopus (115) Google Scholar), whereas BIR1 inhibits DrICE (Kaiser et al., 1998Kaiser W.J. Vucic D. Miller L.K. The Drosophila inhibitor of apoptosis DIAP1 suppresses cell death induced by the caspase drICE.FEBS Lett. 1998; 440: 243-248Abstract Full Text Full Text PDF PubMed Scopus (100) Google Scholar; Yan et al., 2004Yan N. Wu J.W. Chai J. Li W. Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim.Nat. Struct. Mol. Biol. 2004; 11: 420-428Crossref PubMed Scopus (87) Google Scholar). Importantly, Reaper, Hid, and Grim each contain N-terminal IAP-binding motifs that interact with the BIR2 and BIR1 domains of DIAP1 to reverse the inhibition of Dronc and DrICE, respectively (Yan et al., 2004Yan N. Wu J.W. Chai J. Li W. Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim.Nat. Struct. Mol. Biol. 2004; 11: 420-428Crossref PubMed Scopus (87) Google Scholar; Wu et al., 2001Wu J.W. Cocina A.E. Chai J. Hay B.A. Shi Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides.Mol. Cell. 2001; 8: 95-104Abstract Full Text Full Text PDF PubMed Scopus (100) Google Scholar; Hawkins et al., 2000Hawkins C.J. Yoo S.J. Peterson E.P. Wang S.L. Vernooy S.Y. Hay B.A. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM.J. Biol. Chem. 2000; 275: 27084-27093Abstract Full Text Full Text PDF PubMed Google Scholar; Wang et al., 1999Wang S.L. Hawkins C.J. Yoo S.J. Muller H.A. Hay B.A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID.Cell. 1999; 98: 453-463Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar). Based on this brief introduction, it is clear that divergent evolution has led to profound differences in how apoptosome assembly is regulated. This is mirrored by differences in the conformation and oligomerization state of inactive Apaf-1-like molecules. Divergence has also altered platform symmetry and CARD presentation on worm, human, and fly apoptosomes. These points will be explored in more detail in the following sections. Finally, the activation of initiator procaspases is discussed in light of recent structures of pc-9 apoptosomes that revealed an asymmetric proteolysis machine (Yuan et al., 2011bYuan S. Yu X. Asara J.M. Heuser J.E. Ludtke S.J. Akey C.W. The holo-apoptosome: activation of procaspase-9 and interactions with procaspase-3.Structure. 2011; 19: 1084-1096Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar). In a unifying proposal, we suggest that initiator procaspases may be activated in a conserved manner in all metazoans. Thus, a CARD-CARD disk in the holo-apoptosome may tether catalytic domains in close proximity to the platform and regulate the accessibility of platform binding sites that mediate procaspase activation (Yuan et al., 2010Yuan S. Yu X. Topf M. Ludtke S.J. Wang X. Akey C.W. Structure of an apoptosome-procaspase-9 CARD complex.Structure. 2010; 18: 571-583Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, Yuan et al., 2011bYuan S. Yu X. Asara J.M. Heuser J.E. Ludtke S.J. Akey C.W. The holo-apoptosome: activation of procaspase-9 and interactions with procaspase-3.Structure. 2011; 19: 1084-1096Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar). CED-4, Apaf-1, and Dark are members of the signal transduction ATPases with numerous domains (STAND) class within the AAA+ superfamily (Danot et al., 2009Danot O. Marquenet E. Vidal-Ingigliardi D. Richet E. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins.Structure. 2009; 17: 172-182Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar; Leipe et al., 2004Leipe D.D. Koonin E.V. Aravind L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.J. Mol. Biol. 2004; 343: 1-28Crossref PubMed Scopus (322) Google Scholar). These proteins contain three tandemly arrayed domains within the nucleotide-binding and oligomerization domain (NOD; Figure 2A). The nucleotide-binding domain (NBD) and helix domain 1 (HD1) create a binding pocket for ATP and ADP (or their deoxy analogs). These domains are predicted to oligomerize and form a ring, based on their roles in other AAA+ ATPases (Riedl et al., 2005Riedl S.J. Li W. Chao Y. Schwarzenbacher R. Shi Y. Structure of the apoptotic protease-activating factor 1 bound to ADP.Nature. 2005; 434: 926-933Crossref PubMed Scopus (280) Google Scholar; Diemand and Lupas, 2006Diemand A.V. Lupas A.N. Modeling AAA+ ring complexes from monomeric structures.J. Struct. Biol. 2006; 156: 230-243Crossref PubMed Scopus (54) Google Scholar; Danot et al., 2009Danot O. Marquenet E. Vidal-Ingigliardi D. Richet E. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins.Structure. 2009; 17: 172-182Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar). A novel winged helix domain (WHD) follows HD1 and also participates in ring formation (Qi et al., 2010Qi S. Pang Y. Hu Q. Liu Q. Li H. Zhou Y. He T. Liang Q. Liu Y. Yuan X. et al.Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4.Cell. 2010; 141: 446-457Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar; Yuan et al., 2010Yuan S. Yu X. Topf M. Ludtke S.J. Wang X. Akey C.W. Structure of an apoptosome-procaspase-9 CARD complex.Structure. 2010; 18: 571-583Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, Yuan et al., 2011bYuan S. Yu X. Asara J.M. Heuser J.E. Ludtke S.J. Akey C.W. The holo-apoptosome: activation of procaspase-9 and interactions with procaspase-3.Structure. 2011; 19: 1084-1096Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar). A moderately conserved helical domain, denoted HD2, is located after the NOD and forms an arm that extends from the central hub to support two β-propellers in human and fly apoptosomes (Figures 1 and 2A; Yuan et al., 2010Yuan S. Yu X. Topf M. Ludtke S.J. Wang X. Akey C.W. Structure of an apoptosome-procaspase-9 CARD complex.Structure. 2010; 18: 571-583Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, Yuan et al., 2011aYuan S. Yu X. Topf M. Dorstyn L. Kumar S. Ludtke S.J. Akey C.W. Structure of the Drosophila apoptosome at 6.9Å resolution.Structure. 2011; 19: 128-140Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar; Yu et al., 2005Yu X. Acehan D. Menetret J.F. Booth C.R. Ludtke S.J. Riedl S.J. Shi Y. Wang X. Akey C.W. A structure of the human apoptosome at 12.8 Å resolution provides insights into this cell death platform.Structure. 2005; 13: 1725-1735Abstract Full Text Full Text PDF PubMed Scopus (122) Google Scholar, Yu et al., 2006Yu X. Wang L. Acehan D. Wang X. Akey C.W. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer.J. Mol. Biol. 2006; 355: 577-589Crossref PubMed Scopus (114) Google Scholar). The N-terminal effector domain in Apaf-1 like proteins is a CARD that mediates homotypic interactions with a procaspase CARD. In total, there are 23 NOD proteins in humans, but only Apaf-1 facilitates apoptosis. Other NOD proteins are predicted to form signaling or activation platforms in inflammation pathways (Proell et al., 2008Proell M. Riedl S.J. Fritz J.H. Rojas A.M. Schwarzenbacher R. The Nod-like receptor (NLR) family: a tale of similarities and differences.PLoS ONE. 2008; 3: e2119Crossref PubMed Scopus (272) Google Scholar; Inohara and Nuñez, 2003Inohara N. Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis.Nat. Rev. Immunol. 2003; 3: 371-382Crossref PubMed Scopus (861) Google Scholar), as exemplified by the NAIP5-NLRC4 inflammasome (Halff et al., 2012Halff E.F. Diebolder C.A. Versteeg M. Schouten A. Brondijk T.H. Huizinga E.G. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin.J. Biol. Chem. 2012; 287: 38460-38472Crossref PubMed Scopus (117) Google Scholar). The CED-4 molecule is a shorter version of Apaf-1 and Dark, as the latter two proteins have 15 WD40 repeats located directly after HD2 that form tandem seven- and eight-blade β-propellers (Yuan et al., 2010Yuan S. Yu X. Topf M. Ludtke S.J. Wang X. Akey C.W. Structure of an apoptosome-procaspase-9 CARD complex.Structure. 2010; 18: 571-583Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, Yuan et al., 2011aYuan S. Yu X. Topf M. Dorstyn L. Kumar S. Ludtke S.J. Akey C.W. Structure of the Drosophila apoptosome at 6.9Å resolution.Structure. 2011; 19: 128-140Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar; Reubold et al., 2011Reubold T.F. Wohlgemuth S. Eschenburg S. Crystal structure of full-length apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis.Structure. 2011; 19: 1074-1083Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar). Truncation of CED-4 reflects a different strategy for regulating apoptosome assembly in worms, wherein CED-9 forms a complex with a CED-4 lateral dimer to prevent further assembly (Yan et al., 2004Yan N. Wu J.W. Chai J. Li W. Shi Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim.Nat. Struct. Mol. Biol. 2004; 11: 420-428Crossref PubMed Scopus (87) Google Scholar, Yan et al., 2005Yan N. Chai J. Lee E.S. Gu L. Liu Q. He J. Wu J.W. Kokel D. Li H. Hao Q. et al.Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans.Nature. 2005; 437: 831-837Crossref PubMed Scopus (178) Google Scholar; Figures 1 and 2B). In the lateral dimer, both CED-4 monomers bind ATP and adopt an extended conformation, whereas CED-9 blocks the NBD in monomer A to prevent ring formation. Intriguingly, the N-terminal CARD of CED-4 sits atop the NBD in monomer A, whereas the CARD in monomer B is completely disordered in the crystal. Hence, both CARDs in the CED-4 lateral dimer appear be accessibl

Referência(s)