ATM-dependent CHK2 Activation Induced by Anticancer Agent, Irofulven
2004; Elsevier BV; Volume: 279; Issue: 38 Linguagem: Inglês
10.1074/jbc.m400015200
ISSN1083-351X
AutoresJian Wang, Timothy D. Wiltshire, Yutian Wang, Carmenza Mikell, Julian Burks, Cynthia Cunningham, Emily S. Van Laar, Stephen J. Waters, Eddie Reed, Weixin Wang,
Tópico(s)Cancer therapeutics and mechanisms
ResumoIrofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are semisynthetic derivatives of the mushroom toxin illudin S. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types. Mechanisms of action studies indicate that irofulven induces DNA damage, MAPK activation, and apoptosis. In this study we found that in ovarian cancer cells, CHK2 kinase is activated by irofulven while CHK1 kinase is not activated even when treated at higher concentrations of the drug. By using GM00847 human fibroblast expressing tetracycline-controlled, FLAG-tagged kinase-dead ATR (ATR.kd), it was demonstrated that ATR kinase does not play a major role in irofulven-induced CHK2 activation. Results from human fibroblasts proficient or deficient in ATM function (GM00637 and GM05849) indicated that CHK2 activation by irofulven is mediated by the upstream ATM kinase. Phosphorylation of ATM on Ser1981, which is critical for kinase activation, was observed in ovarian cancer cell lines treated with irofulven. RNA interference results confirmed that CHK2 activation was inhibited after introducing siRNA for ATM. Finally, experiments done with human colon cancer cell line HCT116 and its isogenic CHK2 knockout derivative; and experiments done by expressing kinase-dead CHK2 in an ovarian cancer cell line demonstrated that CHK2 activation contributes to irofulven-induced S phase arrest. In addition, it was shown that NBS1, SMC1, and p53 were phosphorylated in an ATM-dependent manner, and p53 phosphorylation on serine 20 is dependent on CHK2 after irofulven treatment. In summary, we found that the anticancer agent, irofulven, activates the ATM-CHK2 DNA damage-signaling pathway, and CHK2 activation contributes to S phase cell cycle arrest induced by irofulven. Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are semisynthetic derivatives of the mushroom toxin illudin S. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types. Mechanisms of action studies indicate that irofulven induces DNA damage, MAPK activation, and apoptosis. In this study we found that in ovarian cancer cells, CHK2 kinase is activated by irofulven while CHK1 kinase is not activated even when treated at higher concentrations of the drug. By using GM00847 human fibroblast expressing tetracycline-controlled, FLAG-tagged kinase-dead ATR (ATR.kd), it was demonstrated that ATR kinase does not play a major role in irofulven-induced CHK2 activation. Results from human fibroblasts proficient or deficient in ATM function (GM00637 and GM05849) indicated that CHK2 activation by irofulven is mediated by the upstream ATM kinase. Phosphorylation of ATM on Ser1981, which is critical for kinase activation, was observed in ovarian cancer cell lines treated with irofulven. RNA interference results confirmed that CHK2 activation was inhibited after introducing siRNA for ATM. Finally, experiments done with human colon cancer cell line HCT116 and its isogenic CHK2 knockout derivative; and experiments done by expressing kinase-dead CHK2 in an ovarian cancer cell line demonstrated that CHK2 activation contributes to irofulven-induced S phase arrest. In addition, it was shown that NBS1, SMC1, and p53 were phosphorylated in an ATM-dependent manner, and p53 phosphorylation on serine 20 is dependent on CHK2 after irofulven treatment. In summary, we found that the anticancer agent, irofulven, activates the ATM-CHK2 DNA damage-signaling pathway, and CHK2 activation contributes to S phase cell cycle arrest induced by irofulven. Irofulven 1The abbreviations used are: irofulven, 6-hydroxymethylacylfulvene; CHK1, checkpoint kinase 1; CHK2, checkpoint kinase 2; ATM, ataxia telangiectasia-mutated protein; ATR, ATM-RAD3-related; NBS1, Nijmegen breakage syndrome 1; SMC1, structural maintenance of chromosome 1; BRCA1, breast cancer 1; MDM2, murine double minute 2; PBS, phosphate-buffered saline; IR, ionizing radiation; siRNA, small interfering RNA; BSA, bovine serum albumin; FITC, fluorescein isothiocyanate; MAPK, mitogen-activated protein kinase; GFP, green fluorescent protein. 1The abbreviations used are: irofulven, 6-hydroxymethylacylfulvene; CHK1, checkpoint kinase 1; CHK2, checkpoint kinase 2; ATM, ataxia telangiectasia-mutated protein; ATR, ATM-RAD3-related; NBS1, Nijmegen breakage syndrome 1; SMC1, structural maintenance of chromosome 1; BRCA1, breast cancer 1; MDM2, murine double minute 2; PBS, phosphate-buffered saline; IR, ionizing radiation; siRNA, small interfering RNA; BSA, bovine serum albumin; FITC, fluorescein isothiocyanate; MAPK, mitogen-activated protein kinase; GFP, green fluorescent protein. (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are analogs of mushroom-derived illudin toxins. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types (1Kelner M.J. McMorris T.C. Rojas R.J. Trani N.A. Estes L. Cancer Chemother. Pharmacol. 2002; 49: 412-418Crossref PubMed Scopus (17) Google Scholar, 2MacDonald J.R. Muscoplat C.C. Dexter D.L. Mangold G.L. Chen S.F. Kelner M.J. McMorris T.C. Von Hoff D.D. Cancer Res. 1997; 57: 279-283PubMed Google Scholar, 3Kelner M.J. McMorris T.C. Estes L. Samson K.M. Bagnell R.D. Taetle R. Eur. J. Cancer. 1998; 34: 908-913Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar, 4Kelner M.J. McMorris T.C. Estes L. Wang W. Samson K.M. Taetle R. Investig. New Drugs. 1996; 14: 161-167Crossref PubMed Scopus (69) Google Scholar, 5Kelner M.J. McMorris T.C. Estes L.A. Oval M.Y. Rojas R.J. Lynn J.R. Lanham K.A. Samson K.M. Anticancer Drugs. 2000; 11: 217-224Crossref PubMed Scopus (29) Google Scholar, 6Sato Y. Kashimoto S. MacDonald J.R. Nakano K. Eur. J. Cancer. 2001; 37: 1419-1428Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar, 7Friedman H.S. Keir S.T. Houghton P.J. Lawless A.A. Bigner D.D. Waters S.J. Cancer Chemother. Pharmacol. 2001; 48: 413-416Crossref PubMed Scopus (14) Google Scholar, 8Kelner M.J. McMorris T.C. Taetle R. J. Natl. Cancer Inst. 1990; 82: 1562-1565Crossref PubMed Scopus (93) Google Scholar, 9Hammond L.A. Hilsenbeck S.G. Eckhardt S.G. Marty J. Mangold G. MacDonald J.R. Rowinsky E.K. Von Hoff D.D. Weitman S. Eur. J. Cancer. 2000; 36: 2430-2436Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar, 10Hidalgo M. Izbicka E. Eckhardt S.G. MacDonald J.R. Cerna C. Gomez L. Rowinsky E.K. Weitman S.D. Von Hoff D.D. Anticancer Drugs. 1999; 10: 837-844Crossref PubMed Scopus (24) Google Scholar, 11Britten C.D. Hilsenbeck S.G. Eckhardt S.G. Marty J. Mangold G. MacDonald J.R. Rowinsky E.K. Von Hoff D.D. Weitman S. Cancer Res. 1999; 59: 1049-1053PubMed Google Scholar, 12Seiden M.V. Oncologist. 2001; 6: 327-332Crossref PubMed Scopus (22) Google Scholar, 13Giles F. Cortes J. Garcia-Manero G. Kornblau S. Estey E. Kwari M. Murgo A. Kantarjian H. Investig. New Drugs. 2001; 19: 13-20Crossref PubMed Scopus (11) Google Scholar, 14Eckhardt S.G. Baker S.D. Britten C.D. Hidalgo M. Siu L. Hammond L.A. Villalona-Calero M.A. Felton S. Drengler R. Kuhn J.G. Clark G.M. Smith S.L. MacDonald J.R. Smith C. Moczygemba J. Weitman S. Von Hoff D.D. Rowinsky E.K. J. Clin. Oncol. 2000; 18: 4086-4097Crossref PubMed Scopus (51) Google Scholar, 15Murgo A. Cannon D.J. Blatner G. Cheson B.D. Oncology (Huntingt.). 1999; 13: 237-238Google Scholar, 16Kelner M.J. McMorris T.C. Rojas R.J. Trani N.A. Velasco T.R. Estes L.A. Suthipinijtham P. Investig. New Drugs. 2002; 20: 271-279Crossref PubMed Scopus (15) Google Scholar, 17Poindessous V. Koeppel F. Raymond E. Comisso M. Waters S.J. Larsen A.K. Clin. Cancer Res. 2003; 9: 2817-2825PubMed Google Scholar). Studies of mechanisms of irofulven action suggest that it induces DNA damage, MAP kinase activation and apoptosis (18Kelner M.J. McMorris T.C. Beck W.T. Zamora J.M. Taetle R. Cancer Res. 1987; 47: 3186-3189PubMed Google Scholar, 19Wang W. Waters S.J. MacDonald J.R. Von Hoff D.D. Strodel W.E. Miller A.R. Anticancer Res. 2001; 21: 1789-1794PubMed Google Scholar, 20Wang W. Waters S.J. MacDonald J.R. Roth C. Shentu S. Freeman J. Von Hoff D.D. Miller A.R. Anticancer Res. 2002; 22: 559-564PubMed Google Scholar). It is also suggested that irofulven-elicited DNA lesions are mainly repaired by transcription-coupled nucleotide excision repair (TC-NER) (21Jaspers N.G. Raams A. Kelner M.J. Ng J.M. Yamashita Y.M. Takeda S. McMorris T.C. Hoeijmakers J.H. DNA Repair (Amst.). 2002; 1: 1027-1038Crossref PubMed Scopus (108) Google Scholar). In response to DNA damage, the cell evokes signal transduction pathways to arrest at G1/S, S, or G2/M checkpoints, allowing time to deal with the insult (22Sherr C.J. Cancer Res. 2000; 60: 3689-3695PubMed Google Scholar, 23Zhou B.B. Elledge S.J. Nature. 2000; 408: 433-439Crossref PubMed Scopus (2596) Google Scholar). It has been well documented that DNA damage activates ATM (ataxia telangiectasia-mutated), and/or ATR (ATM-RAD3-related) kinases, two apical protein kinases of the DNA damage response pathways. ATM and ATR phosphorylate downstream effector kinases, CHK1 and CHK2. It is generally believed that ATM is the kinase mainly responding to ionizing radiation (IR)-induced DNA double strand breaks, while ATR responds to the formation of DNA adducts and stalled replication induced by UV, genotoxic drugs, and radiation (23Zhou B.B. Elledge S.J. Nature. 2000; 408: 433-439Crossref PubMed Scopus (2596) Google Scholar, 24Barlow C. Hirotsune S. Paylor R. Liyanage M. Eckhaus M. Collins F. Shiloh Y. Crawley J.N. Ried T. Tagle D. Wynshaw-Boris A. Cell. 1996; 86: 159-171Abstract Full Text Full Text PDF PubMed Scopus (1249) Google Scholar, 25Xu Y. Ashley T. Brainerd E.E. Bronson R.T. Meyn M.S. Baltimore D. Genes Dev. 1996; 10: 2411-2422Crossref PubMed Scopus (736) Google Scholar, 26Brown E.J. Baltimore D. Genes Dev. 2000; 14: 397-402PubMed Google Scholar, 27de Klein A. Muijtjens M. van Os R. Verhoeven Y. Smit B. Carr A.M. Lehmann A.R. Hoeijmakers J.H. Curr. Biol. 2000; 10: 479-482Abstract Full Text Full Text PDF PubMed Scopus (332) Google Scholar, 28Abraham R.T. Genes Dev. 2001; 15: 2177-2196Crossref PubMed Scopus (1648) Google Scholar, 29Liu Q. Guntuku S. Cui X.S. Matsuoka S. Cortez D. Tamai K. Luo G. Carattini-Rivera S. DeMayo F. Bradley A. Donehower L.A. Elledge S.J. Genes Dev. 2000; 14: 1448-1459Crossref PubMed Scopus (191) Google Scholar). ATM phosphorylates NBS1 on Ser343 and activates its function in forming the MRE11-RAD50-NBS1 complex and S phase checkpoint control (30Lim D.S. Kim S.T. Xu B. Maser R.S. Lin J. Petrini J.H. Kastan M.B. Nature. 2000; 404: 613-617Crossref PubMed Scopus (670) Google Scholar, 31Gatei M. Young D. Cerosaletti K.M. Desai-Mehta A. Spring K. Kozlov S. Lavin M.F. Gatti R.A. Concannon P. Khanna K. Nat. Genet. 2000; 25: 115-119Crossref PubMed Scopus (407) Google Scholar, 32Wu X. Ranganathan V. Weisman D.S. Heine W.F. Ciccone D.N. O'Neill T.B. Crick K.E. Pierce K.A. Lane W.S. Rathbun G. Livingston D.M. Weaver D.T. Nature. 2000; 405: 477-482Crossref PubMed Scopus (371) Google Scholar). ATM phosphorylates SMC1 on Ser957 and Ser966. Activated SMC1 plays a critical role in S phase checkpoint control and radiosensitivity (33Kim S.T. Xu B. Kastan M.B. Genes Dev. 2002; 16: 560-570Crossref PubMed Scopus (408) Google Scholar, 34Yazdi P.T. Wang Y. Zhao S. Patel N. Lee E.Y. Qin J. Genes Dev. 2002; 16: 571-582Crossref PubMed Scopus (406) Google Scholar). ATM also phosphorylates MDM2 on Ser395, indirectly regulating p53 activity (35Maya R. Balass M. Kim S.T. Shkedy D. Leal J.F. Shifman O. Moas M. Buschmann T. Ronai Z. Shiloh Y. Kastan M.B. Katzir E. Oren M. Genes Dev. 2001; 15: 1067-1077Crossref PubMed Scopus (523) Google Scholar). Both ATM and CHK2 phosphorylate BRCA1 (36Li S. Ting N.S. Zheng L. Chen P.L. Ziv Y. Shiloh Y. Lee E.Y. Lee W.H. Nature. 2000; 406: 210-215Crossref PubMed Scopus (272) Google Scholar, 37Gatei M. Scott S.P. Filippovitch I. Soronika N. Lavin M.F. Weber B. Khanna K.K. Cancer Res. 2000; 60: 3299-3304PubMed Google Scholar, 38Lee J.S. Collins K.M. Brown A.L. Lee C.H. Chung J.H. Nature. 2000; 404: 201-204Crossref PubMed Scopus (458) Google Scholar). BRCA1 plays an important role in S and G2/M checkpoint control (39Xu B. O'Donnell A.H. Kim S.T. Kastan M.B. Cancer Res. 2002; 62: 4588-4591PubMed Google Scholar, 40Xu B. Kim S.T. Lim D.S. Kastan M.B. Mol. Cell. Biol. 2002; 22: 1049-1059Crossref PubMed Scopus (410) Google Scholar, 41Xu B. Kim S. Kastan M.B. Mol. Cell. Biol. 2001; 21: 3445-3450Crossref PubMed Scopus (468) Google Scholar). ATM phosphorylates CHK2 on Thr68 leading to CHK2 kinase activation (42Matsuoka S. Huang M. Elledge S.J. Science. 1998; 282: 1893-1897Crossref PubMed Scopus (1070) Google Scholar, 43Matsuoka S. Rotman G. Ogawa A. Shiloh Y. Tamai K. Elledge S.J. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 10389-10394Crossref PubMed Scopus (678) Google Scholar, 44Melchionna R. Chen X.B. Blasina A. McGowan C.H. Nat. Cell Biol. 2000; 2: 762-765Crossref PubMed Scopus (260) Google Scholar, 45Brown A.L. Lee C.H. Schwarz J.K. Mitiku N. Piwnica-Worms H. Chung J.H. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 3745-3750Crossref PubMed Scopus (236) Google Scholar, 46Chaturvedi P. Eng W.K. Zhu Y. Mattern M.R. Mishra R. Hurle M.R. Zhang X. Annan R.S. Lu Q. Faucette L.F. Scott G.F. Li X. Carr S.A. Johnson R.K. Winkler J.D. Zhou B.B. Oncogene. 1999; 18: 4047-4054Crossref PubMed Scopus (358) Google Scholar), while both ATM and ATR phosphorylate CHK1 on Ser317 and Ser345 resulting in its activation (29Liu Q. Guntuku S. Cui X.S. Matsuoka S. Cortez D. Tamai K. Luo G. Carattini-Rivera S. DeMayo F. Bradley A. Donehower L.A. Elledge S.J. Genes Dev. 2000; 14: 1448-1459Crossref PubMed Scopus (191) Google Scholar, 47Zhao H. Piwnica-Worms H. Mol. Cell. Biol. 2001; 21: 4129-4139Crossref PubMed Scopus (845) Google Scholar, 48Sanchez Y. Wong C. Thoma R.S. Richman R. Wu Z. Piwnica-Worms H. Elledge S.J. Science. 1997; 277: 1497-1501Crossref PubMed Scopus (1113) Google Scholar, 49Gatei M. Sloper K. Sorensen C. Syljuasen R. Falck J. Hobson K. Savage K. Lukas J. Zhou B.B. Bartek J. Khanna K.K. J. Biol. Chem. 2003; 278: 14806-14811Abstract Full Text Full Text PDF PubMed Scopus (243) Google Scholar). ATM and ATR phosphorylate p53 on Ser15 (23Zhou B.B. Elledge S.J. Nature. 2000; 408: 433-439Crossref PubMed Scopus (2596) Google Scholar, 50Lakin N.D. Hann B.C. Jackson S.P. Oncogene. 1999; 18: 3989-3995Crossref PubMed Scopus (110) Google Scholar, 51Kim S.T. Lim D.S. Canman C.E. Kastan M.B. J. Biol. Chem. 1999; 274: 37538-37543Abstract Full Text Full Text PDF PubMed Scopus (636) Google Scholar, 52Canman C.E. Lim D.S. Cimprich K.A. Taya Y. Tamai K. Sakaguchi K. Appella E. Kastan M.B. Siliciano J.D. Science. 1998; 281: 1677-1679Crossref PubMed Scopus (1684) Google Scholar, 53Dumaz N. Meek D.W. EMBO J. 1999; 18: 7002-7010Crossref PubMed Scopus (389) Google Scholar), and CHK1 and CHK2 phosphorylate p53 on Ser20 (54Chehab N.H. Malikzay A. Appel M. Halazonetis T.D. Genes Dev. 2000; 14: 278-288PubMed Google Scholar, 55Shieh S.Y. Ahn J. Tamai K. Taya Y. Prives C. Genes Dev. 2000; 14: 289-300PubMed Google Scholar, 56Hirao A. Kong Y.Y. Matsuoka S. Wakeham A. Ruland J. Yoshida H. Liu D. Elledge S.J. Mak T.W. Science. 2000; 287: 1824-1827Crossref PubMed Scopus (1032) Google Scholar, 57Takai H. Naka K. Okada Y. Watanabe M. Harada N. Saito S. Anderson C.W. Appella E. Nakanishi M. Suzuki H. Nagashima K. Sawa H. Ikeda K. Motoyama N. EMBO J. 2002; 21: 5195-5205Crossref PubMed Scopus (345) Google Scholar, 58Craig A. Scott M. Burch L. Smith G. Ball K. Hupp T. EMBO Rep. 2003; 4: 787-792Crossref PubMed Scopus (47) Google Scholar, 59Chehab N.H. Malikzay A. Stavridi E.S. Halazonetis T.D. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 13777-13782Crossref PubMed Scopus (452) Google Scholar), leading to its accumulation and activation. Activation of p53 initiates cell cycle arrest- and DNA repair-related genes such as p21, GADD45, and 14-3-3δ and leads to G1 and G2 arrest (22Sherr C.J. Cancer Res. 2000; 60: 3689-3695PubMed Google Scholar, 23Zhou B.B. Elledge S.J. Nature. 2000; 408: 433-439Crossref PubMed Scopus (2596) Google Scholar, 54Chehab N.H. Malikzay A. Appel M. Halazonetis T.D. Genes Dev. 2000; 14: 278-288PubMed Google Scholar, 55Shieh S.Y. Ahn J. Tamai K. Taya Y. Prives C. Genes Dev. 2000; 14: 289-300PubMed Google Scholar, 56Hirao A. Kong Y.Y. Matsuoka S. Wakeham A. Ruland J. Yoshida H. Liu D. Elledge S.J. Mak T.W. Science. 2000; 287: 1824-1827Crossref PubMed Scopus (1032) Google Scholar, 60Bunz F. Dutriaux A. Lengauer C. Waldman T. Zhou S. Brown J.P. Sedivy J.M. Kinzler K.W. Vogelstein B. Science. 1998; 282: 1497-1501Crossref PubMed Scopus (2505) Google Scholar, 61Zachos G. Rainey M.D. Gillespie D.A. EMBO J. 2003; 22: 713-723Crossref PubMed Scopus (220) Google Scholar). Activation of p53 also regulates the expression of a plethora of apoptosis-related genes resulting in p53-dependent apoptosis (62Levine A.J. Cell. 1997; 88: 323-331Abstract Full Text Full Text PDF PubMed Scopus (6673) Google Scholar, 63Prives C. Cell. 1998; 95: 5-8Abstract Full Text Full Text PDF PubMed Scopus (626) Google Scholar, 64Prives C. Hall P.A. J Pathol. 1999; 187: 112-126Crossref PubMed Scopus (1220) Google Scholar). Activation of CHK1 and CHK2 also regulates S phase by phosphorylating CDC25A (65Falck J. Mailand N. Syljuasen R.G. Bartek J. Lukas J. Nature. 2001; 410: 842-847Crossref PubMed Scopus (861) Google Scholar, 66Falck J. Petrini J.H. Williams B.R. Lukas J. Bartek J. Nat. Genet. 2002; 30: 290-294Crossref PubMed Scopus (314) Google Scholar, 67Sorensen C.S. Syljuasen R.G. Falck J. Schroeder T. Ronnstrand L. Khanna K.K. Zhou B.B. Bartek J. Lukas J. Cancer Cell. 2003; 3: 247-258Abstract Full Text Full Text PDF PubMed Scopus (446) Google Scholar, 68Bartek J. Lukas J. Cancer Cell. 2003; 3: 421-429Abstract Full Text Full Text PDF PubMed Scopus (1199) Google Scholar, 69Feijoo C. Hall-Jackson C. Wu R. Jenkins D. Leitch J. Gilbert D.M. Smythe C. J. Cell Biol. 2001; 154: 913-923Crossref PubMed Scopus (283) Google Scholar, 70Zhou X.Y. Wang X. Hu B. Guan J. Iliakis G. Wang Y. Cancer Res. 2002; 62: 1598-1603PubMed Google Scholar, 71Zhao H. Watkins J.L. Piwnica-Worms H. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 14795-14800Crossref PubMed Scopus (415) Google Scholar, 72Zeng Y. Forbes K.C. Wu Z. Moreno S. Piwnica-Worms H. Enoch T. Nature. 1998; 395: 507-510Crossref PubMed Scopus (305) Google Scholar), or the G2/M transition by phosphorylating CDC25C (29Liu Q. Guntuku S. Cui X.S. Matsuoka S. Cortez D. Tamai K. Luo G. Carattini-Rivera S. DeMayo F. Bradley A. Donehower L.A. Elledge S.J. Genes Dev. 2000; 14: 1448-1459Crossref PubMed Scopus (191) Google Scholar, 42Matsuoka S. Huang M. Elledge S.J. Science. 1998; 282: 1893-1897Crossref PubMed Scopus (1070) Google Scholar, 68Bartek J. Lukas J. Cancer Cell. 2003; 3: 421-429Abstract Full Text Full Text PDF PubMed Scopus (1199) Google Scholar, 71Zhao H. Watkins J.L. Piwnica-Worms H. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 14795-14800Crossref PubMed Scopus (415) Google Scholar, 73Blasina A. de Weyer I.V. Laus M.C. Luyten W.H. Parker A.E. McGowan C.H. Curr. Biol. 1999; 9: 1-10Abstract Full Text Full Text PDF PubMed Scopus (242) Google Scholar, 74Furnari B. Blasina A. Boddy M.N. McGowan C.H. Russell P. Mol. Biol. Cell. 1999; 10: 833-845Crossref PubMed Scopus (177) Google Scholar, 75Chen Z. Xiao Z. Chen J. Ng S.C. Sowin T. Sham H. Rosenberg S. Fesik S. Zhang H. Mol. Cancer Ther. 2003; 2: 543-548Crossref PubMed Scopus (56) Google Scholar, 76Graves P.R. Yu L. Schwarz J.K. Gales J. Sausville E.A. O'Connor P.M. Piwnica-Worms H. J. Biol. Chem. 2000; 275: 5600-5605Abstract Full Text Full Text PDF PubMed Scopus (504) Google Scholar). However, controversy exists regarding the role of CHK2 in cell cycle regulation and p53 phosphorylation. Recent studies indicate that CHK2 is dispensable in radiation-induced G1 and G2/M arrest, and CHK1 and CHK2 are unlikely to be the regulators of p53 (77Jack M.T. Woo R.A. Hirao A. Cheung A. Mak T.W. Lee P.W. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 9825-9829Crossref PubMed Scopus (101) Google Scholar, 78Jallepalli P.V. Lengauer C. Vogelstein B. Bunz F. J. Biol. Chem. 2003; 278: 20475-20479Abstract Full Text Full Text PDF PubMed Scopus (135) Google Scholar, 79Ahn J. Urist M. Prives C. J. Biol. Chem. 2003; 278: 20480-20489Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar). It has also been shown that cells from CHK2 knockout mice have normal S phase and G2/M transition (56Hirao A. Kong Y.Y. Matsuoka S. Wakeham A. Ruland J. Yoshida H. Liu D. Elledge S.J. Mak T.W. Science. 2000; 287: 1824-1827Crossref PubMed Scopus (1032) Google Scholar, 57Takai H. Naka K. Okada Y. Watanabe M. Harada N. Saito S. Anderson C.W. Appella E. Nakanishi M. Suzuki H. Nagashima K. Sawa H. Ikeda K. Motoyama N. EMBO J. 2002; 21: 5195-5205Crossref PubMed Scopus (345) Google Scholar). In this study, we found that the anticancer agent, irofulven, activates ATM-CHK2 DNA damage-signaling pathway, and activates NBS1, SMC1, and p53 in an ATM-dependent manner. Irofulven also induces CHK2-dependent p53 phosphorylation on Ser20. This CHK2 activation contributes to irofulven-induced S phase arrest. Cell Culture—All cell lines were maintained in various media supplemented with 10% fetal bovine serum in a 37 °C incubator with 5% CO2 atmosphere. Human ovarian cancer cell lines A2780, A2780/CP70, CAOV3, OVCAR3, and SKOV3 were cultured in RPMI1640. Human colon cancer cell line HCT116 and its isogenic CHK2 knockout derivative HCT116 CHK2–/– (78Jallepalli P.V. Lengauer C. Vogelstein B. Bunz F. J. Biol. Chem. 2003; 278: 20475-20479Abstract Full Text Full Text PDF PubMed Scopus (135) Google Scholar) (generously provided by Prof. Bert Vogelstein, Johns Hopkins University, Baltimore, MD) were cultured in McCoy's 5A medium. The SV40-transformed human normal fibroblast GM00637, the AT (ataxia telangiectasia) fibroblast GM05849 and its parental non-transformed AT fibroblast GM05823 (Coriell Institute, Camden, NJ) were grown in DMEM. The ATM-complemented AT fibroblast (AT22IJE-T-pEBS7-YZ5, generously provided by Prof. Yosef Shiloh, Tel Aviv University, Israel) (80Ziv Y. Bar-Shira A. Pecker I. Russell P. Jorgensen T.J. Tsarfati I. Shiloh Y. Oncogene. 1997; 15: 159-167Crossref PubMed Scopus (223) Google Scholar) was grown in Dulbecco's modified Eagle's medium with 100 μg/ml hygromycin (Invitrogen, Carlsbad, CA). GM00847 human fibroblast-expressing tetracycline-controlled, FLAG-tagged kinase-dead ATR (ATR.kd) (81Cliby W.A. Roberts C.J. Cimprich K.A. Stringer C.M. Lamb J.R. Schreiber S.L. Friend S.H. EMBO J. 1998; 17: 159-169Crossref PubMed Scopus (478) Google Scholar) (generously provided by Drs. Stuart L. Schreiber and Shlomo Handeli of the Fred Hutchinson Cancer Research Center, Seattle, WA) was grown in DMEM supplemented with 400 μg/ml of G418 (Invitrogen). For ATR.kd induction, cells were treated with 1.5 μg/ml of doxycycline (Sigma) for 48 h. For UV treatment in control experiments, cells were treated with 50 J/m2 of UV light in Stratalinker 2400 (Stratagene, La Jolla, CA) followed by one additional hour of incubation. To inhibit CDC25A degradation, proteasome inhibitor LLnL (N-Acetyl-Leu-Leu-Norleu-al) (Sigma) (50 μm) were added to cells 30 min before irofulven treatment. Colonogenic Survival Assay—The IC50 concentration of irofulven in ovarian cancer cell lines and the colon cancer cell line HCT116 was determined by colonogenic survival assay. Cells were plated in 6-well plates overnight in complete medium. Cells were treated with different concentrations of irofulven for 1 h. Medium was then replaced with fresh drug-free medium and incubated for 7–10 days. Colonies were stained with PBS containing 0.04% crystal violet and 0.5% paraform-aldehyde for about 10 min. Staining liquid was aspirated and colonies counted. Western Blotting—Western blot was performed as described previously (20Wang W. Waters S.J. MacDonald J.R. Roth C. Shentu S. Freeman J. Von Hoff D.D. Miller A.R. Anticancer Res. 2002; 22: 559-564PubMed Google Scholar). Briefly, cell lysates were prepared in cold immunoprecipitation buffer (10 mm Tris, pH 7.4, 1% Triton X-100, 0.5% Nonidet P-40, 150 mm NaCl, 30 mm sodium fluoride, 40 mm β-glycerophosphate, 20 mm sodium pyrophosphate, 1 mm EDTA, 1 mm EGTA, and 0.2 mm phenylmethylsulfonyl fluoride). Total cellular protein (40 μg) was electrophoresed in SDS-PAGE gels and transferred to Immobilon-P membranes (Millipore, Bedford, MA). Western blot protein detection was performed using the ECL kit (Amersham Biosciences) according to the manufacturer's recommendations. Monoclonal antibodies against actin and FLAG were purchased from Sigma. Monoclonal antibody against PARP and polyclonal antibodies against ATR, SMC1, NBS1, CDC25A, p53, and phosphorylated p53 on Ser15 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal antibodies against phosphorylated CHK1 on Ser345, phosphorylated CHK2 on Thr68, phosphorylated p53 on Ser20, CHK1 and CHK2 were purchased from Cell Signaling Technology (Beverly, MA). Polyclonal antibody against phosphorylated ATM on Ser1981 was purchased from Rockland Immunochemicals (Gilbertsville, PA). Polyclonal antibody for ATM was purchased from Oncogene Research Products (San Diego, CA). Polyclonal antibodies against phosphorylated NBS1 on Ser343 and phosphorylated SMC1 on Ser957 were purchased from Novus Biologicals (Littleton, CO). BrdU Pulse Labeling and Flow Cytometry—Cells were prelabeled with 10 μm BrdU (Roche Applied Science, Indianapolis, IN) for 1 h before treatment with irofulven for 1 h. After drug removal, cells were incubated in drug-free medium and harvested by trypsinization at different time points. Cells were washed once with cold PBS and fixed in 75% ethanol/PBS. Cells were then washed with 1% BSA/PBS and resuspended in 2 n HCl/0.5% Triton X-100. After incubating for 30 min at room temperature, the cells were washed twice with 1% BSA/PBS and resuspended in 0.2 ml of 1% BSA/PBS. Anti-BrdU antibody (20 μl) (BD PharMingen, San Diego, CA) was added to each cell suspension. After incubating in the dark for 30 min at room temperature, cells were centrifuged and resuspended in PBS containing 10 μg/ml propidium iodide, 20 μg/ml RNase A, 0.1% sodium citrate, and 0.1% Triton X-100. Cells were analyzed by FACSCalibur (BD Biosciences). Cell cycle distributions among BrdU-positive cells were analyzed by ModFit v3.0 software (Verity, Topsham, ME). RNA Interference—The sense and antisense oligonucleotides for small interfering RNA (siRNA) were synthesized and annealed by Dharmacon (Lafayette, CO). The sequences of two double-stranded siRNAs for ATM are CATCTAGATCGGCATTCAG and TGGTGCTATTTACGGAGCT. The siRNA sequence for bacterial green fluorescence protein (GFP) gene is TGGAAGCGTTCAACTAGCA. A2780 cells were transfected twice within a 24-h period starting at 40% confluence with 100 nm final concentrations of siRNAs for ATM (two ATM siRNAs were pooled) and GFP using Oligofectamine (Invitrogen) according to the manufacturer's recommendations. Twenty-four hours after transfection, cells were treated with irofulven for 1 h, washed, and incubated in drug-free media, and harvested 12 h later. Cell lysates were prepared for Western blot as described above. Transfection of Kinase-dead CHK2 and Flow Cytometry—Ovarian cancer cell line CAOV3 was transfected twice within a 24-h period with vector or HA-tagged kinase-dead CHK2 (82Busby E.C. Leistritz D.F. Abraham R.T. Karnitz L.M. Sarkaria J.N. Cancer Res. 2000; 60: 2108-2112PubMed Google Scholar) (generously provided by Dr. Jann Sarkaria of the Mayo Clinic and Foundation, Rochester, MN) using FuGENE 6 (Roche Applied Science, Indianapolis, IN) according to the manufacturer's recommendations. Forty-eight hours after transfection, cells were treated with irofulven for 1 h, washed, and incubated in drug-free media, and harvested 12 h later. Cells were then washed with PBS and fixed in 70% ethanol. After washing twice with PBS, cells were permeabilized with 0.25% Triton X-100 in PBS on ice for 15 min, then washed with 1% BSA/PBS, and the cell pellet was suspended in 100 μl of 1% BSA/PBS containing 1 μg of FITC-conjugated anti-HA antibody (Roche Applied Science) for 3 h at room temperature. Cells were washed three times in PBS and then resuspended in PBS containing 10 μg/ml of propidium iodide and 20 μg/ml of RNase A. Cells were analyzed by FACSCalibur (BD Biosciences), and cell cycle distributions for propidium iodide and FITC-positive cells were analyzed by ModFit v3.0 software (Verity, Topsham, ME). Irofulven Activates CHK2 Kinase in Ovarian Cancer Cells—To assess irofulven cytotoxicity, ovarian cancer cell lines were treated with different concentrations of irofulven for 1 h, then the drug was removed, and colonogenic formation assays were performed. The IC50 concentrations obtained for ovarian cancer cell lines (A2780, A2780/CP70, CAOV3, SKOV3, and OVCAR3) ranged from 0.7 to 2.3 μm. In response to DNA damage, CHK2 kinase is phosphorylated at Thr68, which is critical for CHK2 activation (42Matsuoka S. Huang M. Elledge S.J. Science. 1998; 282: 1893-1897Crossref PubMed Scopus (1070) Google Scholar, 43Matsuoka S. Rotman G. Ogawa A. Shiloh Y. Tamai K. Elledge S.J. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 10389-10394Crossref PubMed Scopus (678) Google Scholar, 44Melchionna R. Chen X.B. Blasina A. McGowan C.H. Nat. Cell Biol. 2000; 2: 762-765Crossref PubMed Scopus (260) Google Scholar, 46Chaturvedi P. Eng W.K. Zhu Y. Mattern M.R. Mishra R. Hurle M.R. Zhang X. Annan R.S. Lu Q. Faucette L.F. Scott G.F. Li X. Carr S.A. Johnson R.K. Winkler J.D. Zhou B.B. Oncogene. 1999; 18: 4047-4054Crossref PubMed Scopus (358) Google Scholar, 83Ahn J.Y. Schwarz J.K. Piwnica-Worms H. Canm
Referência(s)