Revisão Revisado por pares

Insights into Possible Skeletal Muscle Nicotinic Acetylcholine Receptor (AChR) Changes in Some Congenital Myasthenias from Physiological Studies, Point Mutations, and Subunit Substitutions of the AChRa

1993; Wiley; Volume: 681; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1993.tb22928.x

ISSN

1749-6632

Autores

Henry J. Kaminski, Robert L. Ruff,

Tópico(s)

Ion channel regulation and function

Resumo

Annals of the New York Academy of SciencesVolume 681, Issue 1 p. 435-450 Insights into Possible Skeletal Muscle Nicotinic Acetylcholine Receptor (AChR) Changes in Some Congenital Myasthenias from Physiological Studies, Point Mutations, and Subunit Substitutions of the AChRa HENRY J. KAMINSKI, HENRY J. KAMINSKI Departments of Neurology and Neuroscience, Department of Veterans Affairs Medical Center, Case Western Reserve University Medical School Cleveland, Ohio 44106Search for more papers by this authorROBERT L. RUFF, ROBERT L. RUFF Departments of Neurology and Neuroscience, Department of Veterans Affairs Medical Center, Case Western Reserve University Medical School Cleveland, Ohio 44106 Address inquiries to Robert L. Ruff, M.D., Ph.D., Department of Neurology 127(W), Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland OH 44106.Search for more papers by this author HENRY J. KAMINSKI, HENRY J. KAMINSKI Departments of Neurology and Neuroscience, Department of Veterans Affairs Medical Center, Case Western Reserve University Medical School Cleveland, Ohio 44106Search for more papers by this authorROBERT L. RUFF, ROBERT L. RUFF Departments of Neurology and Neuroscience, Department of Veterans Affairs Medical Center, Case Western Reserve University Medical School Cleveland, Ohio 44106 Address inquiries to Robert L. Ruff, M.D., Ph.D., Department of Neurology 127(W), Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland OH 44106.Search for more papers by this author First published: June 1993 https://doi.org/10.1111/j.1749-6632.1993.tb22928.xCitations: 4 a This work was supported by Merit Reviewed Funding from the Department of Veterans Affairs, and National Institutes of Health Grants NS26661 and EY09186. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Engel, A. G., E. H. Lambert, D. M. Mulder, C. F. Torres, K. Sahashi, T. E. Bertorini & J. N. Whitaker. 1982. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann. Neurol. 11: 553–569. 2 Engel, A. G., T. J. Walls, A. Nagel & O. Uchitel. 1990. Newly recognized congenital myasthenic syndromes: I. Congenital paucity of synaptic vesicles and reduced quantal release. II. High conductance fast-channel syndrome. III. Abnormal acetylcholine receptor (AChR) interaction with acetylcholine. IV. AChR deficiency and short channel open time. Prog. Brain Res. 84: 125–137. 3 Guy, H. R. & F. Hucho. 1987. The ion channel of nicotinic acetylcholine receptor. Trends Neurosci. 10: 318–322. 4 Ruff, R. L. 1986. Ionic channels II. Voltage- and agonist-gated and agonist-modified channel properties and structure. Muscle & Nerve 9: 767–786. 5 Witzemann, V., B. Barg, M. Criado, E. Stein & B. Sakmann. 1989. Developmental regulation of five subunit specific mRNAs encoding acetylcholine receptor subtypes in rat muscle. FEBS Lett. 242: 419–424. 6 Dani, J. A. 1989. Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. Trends Neurosci. 12: 125–130. 7 Takai, T., M. Noda, M. Mishina, S. Shimizu, Y. Furutani, T. Kayano, T. Ikeda, K. Tai, H. Takahashi, T. Takahashi, M. Kuno & S. Numa. 1985. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315: 761–764. 8 Mishina, M., T. Takai, K. Imoto, M. Noda, T. Takahashi, S. Numa, C. Methfessl & B. Sakmann. 1986. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321: 406–411. 9 Witzemann, V., B. Barg, Y. Nishikawa, B. Sakmann & S. Numa. 1987. Differential regulation of muscle acetylcholine receptor γ- and ε-subunit mRNAs. FEBS Lett. 223: 104–112. 10 Mishina, M., T. Kurosaki, T. Tobimatsu, Y. Morimoto, M. Noda, T. Yamamoto, M. Terao, J. Lindstrom, T. Takahashi, M. Kuno & S. Numa. 1984. Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307: 604–608. 11 Brehm, P. 1989. Resolving the structural basis for developmental changes in muscle ACh receptor function: it takes nerve. Trends Neurosci. 12: 174–177. 12 Schuetze, S. M. & L. W. Role. 1987. Developmental regulation of nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 10: 403–457. 13 Noda, M., Y. Furutani, H. Takahashi, M. Toyosato, T. Tanabe, S. Shimizu, S. Kikyotani, T. Kayano, T. Hirose, S. Inayama & S. Numa. 1983. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305: 818–823. 14 Merlie, J. P. & J. R. Sanes. 1985. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers. Nature 317: 66–68. 15 Sanes, J. R., Y. R. Johnson, P. T. Kotzbauer, J. Mudd, T. Hanley, J.-C. Martinou & J. P. Merlie. 1991. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113: 1181–1191. 16 Karlin, A., P. N. Kao & M. Dipaola. 1986. Molecular pharmacology of the nicotinic acetylcholine receptor. Trends Pharmacol. Sci. 4: 304–308. 17 Sine, S. M. & J. H. Steinbach. 1987. Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by high concentrations of agonist. J. Physiol. (Lond.) 385: 325–359. 18 Morris, A., D. Beeson, L. Jacobson, F. Baggi, A. Vincent & J. Newsom-Davis. 1991. Two isoforms of the muscle acetylcholine receptor of alpha-subunit are translated in the human cell line TE671. FEBS Lett. 295: 116–118. 19 Sine, S. M. & J. H. Steinbach. 1984. Activation of a nicotinic acetylcholine receptor. Biophys. J. 45: 175–185. 20 Sigworth, F. J. & S. M. Sine. 1987. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52: 1047–1054. 21 Auerbach, A. B. & F. Sachs. 1984. Single channel currents from acetylcholine receptors in embryonic chick muscle. Kinetic and conductance properties of gaps within bursts. Biophys. J. 45: 187–198. 22 Qu, Z., E. Moritz & R. L. Huganir. 1990. Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron 2: 367–378. 23 Safran, A., C. Provenzano, R. Sagi-Eisenberg & S. Fuchs. 1990. Phosphorylation of membrane-bound acetylcholine receptor by protein kinase C: characterization and subunit specificity. Biochemistry 29: 6730–6734. 24 Rozental, R. 1991. In vitro denervation of frog skeletal muscle: expression of several conductance classes of nicotinic receptors. Neurosci. Lett. 133: 65–67. 25 Dionne, V. E. 1989. Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake. J. Physiol. (Lond.) 409: 313–331. 26 Henderson, L. P. & P. Brehm. 1989. The single-channel basis for the slow kinetics of synaptic currents in vertebrate slow muscle fibers. Neuron 2: 1399–1405. 27 Ruff, R. L. & P. Spiegel. 1990. Ca sensitivity and AChR currents of twitch and tonic snake muscle fibers. Am. J. Physiol. 259 (Cellular Physiology): C911–C919. 28 Ruff, R. L., H. J. Kaminski, E. Mass & P. Spiegel. 1989. Ocular muscles: physiology and structure-function correlations. Bull. Soc. Belge Ophtalmol. 237: 321–352. 29 Kaminski, H. J., E. Maas, P. Spiegel & R. L. Ruff. 1990. Why are eye muscles frequently involved by myasthenia gravis? Neurology 40: 1663–1669. 30 Dwyer, T. M., D. J. Adams & B. Hille. 1980. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75: 469–492. 31 Dani, J. A. & G. Eisenman. 1987. Monovalent and divalent cation permeation in acetylcholine receptors channel. J. Gen. Physiol. 89: 959–983. 32 Ruff, R. L. 1986. Ionic Channels: I. The biophysical basis for ion passage and channel gating. Muscle & Nerve 9: 675–699. 33 Toyoshima, C. & N. Unwin. 1988. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336: 247–250. 34 Unwin, N., C. Toyoshima & E. Kubalek. 1988. Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107: 1123–1138. 35 Chavez, R. A. & Z. W. Hall. 1992. Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the α and δ subunits. J. Cell Biol. 116: 385–393. 36 Neumann, D., D. Barchan, M. Horowitz, E. Kochva & S. Fuchs. 1989. Snake acetylcholine receptor: Cloning of the domain containing the four extracellular cysteines of the α-subunit. Proc. Natl. Acad. Sci. USA 86: 7255–7259. 37 Giraudat, J., M. Dennis, T. Heidmann, J.-Y. Chang & J.-P. Changeux. 1986. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labeled [3H] chlorpromazine. Proc. Natl. Acad. Sci. USA 83: 2719–2723. 38 Hucho, F., W. Oberthur & F. Lottspeich. 1986. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205: 137–142. 39 Ruff, R. 1977. A quantitative analysis of local anesthetic alteration of miniature endplate current fluctuations. J. Physiol. (Lond.) 264: 89–124. 40 Ruff, R. L. 1982. The kinetics of local anesthetic blockade of endplate channels. Biophys. J. 37: 625–631. 41 Leonard, R. J., C. G. Labarca, P. Charnet, N. Davidson & H. A. Lester. 1988. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242: 1578–1581. 42 Imoto, K., C. Methfessel, B. Sakmann, M. Mishina, Y. Mori, T. Konno, K. Fukuda, M. Kurasaki, H. Bujo, Y. Fujita & S. Numa. 1986. Location of a δ subunit region determining ion transport through the acetylcholine receptor channel. Nature 324: 670–674. 43 Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda & S. Numa. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 305: 645–648. 44 Sine, S. M. & J. H. Steinbach. 1986. Activation of acetylcholine receptors on clonal mammalian BC3H-1 cells by low concentrations of agonist. J. Physiol. (Lond.) 373: (129–162). 45 Jackson, M. B., B. S. Wong, C. E. Morris, H. Lecar & C. N. Christian. 1983. Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys. J. 42: 109–114. 46 Sine, S. M. & J. H. Steinbach. 1984. Agonists block currents through acetylcholine receptor channels. Biophys. J. 46: 277–284. 47 Engel, A. G., E. H. Lambert, D. M. Mulder, C. F. Torres, K. Sahashi, T. E. Bertorini & J. N. Whitaker. 1979. Investigations of 3 cases of a newly recognized familial, congenital myasthenic syndrome. Trans. Am. Neurol. Assoc. 104: 8–11. 48 Engel, A. 1984. Myasthenia gravis and myasthenic syndrome. Ann. Neurol. 16: 519–534. 49 Morgan-Hughes, J. A., B. R. F. Lecky, D. N. Landon & N. M. F. Murray. 1981. Alterations in the number and affinity of junctional acetylcholine receptors in a myopathy with tubular aggregates. A newly recognized receptor defect. Brain 104: 279–295. Citing Literature Volume681, Issue1Myasthenia Gravis and Related Disorders: Experimental and Clinical AspectsJune 1993Pages 435-450 ReferencesRelatedInformation

Referência(s)