Artigo Revisado por pares

A simple thermal model of the Earth's surface for geologic mapping by remote sensing

1977; American Geophysical Union; Volume: 82; Issue: 11 Linguagem: Inglês

10.1029/jb082i011p01673

ISSN

2156-2202

Autores

Anne B. Kahle,

Tópico(s)

Advanced Image Fusion Techniques

Resumo

Journal of Geophysical Research (1896-1977)Volume 82, Issue 11 p. 1673-1680 A simple thermal model of the Earth's surface for geologic mapping by remote sensing Anne B. Kahle, Anne B. KahleSearch for more papers by this author Anne B. Kahle, Anne B. KahleSearch for more papers by this author First published: 10 April 1977 https://doi.org/10.1029/JB082i011p01673Citations: 114AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia cannot be determined directly but must be inferred from radiation temperature measurements (by thermal IR sensors) made at various times in the diurnal cycle, combined with a model of the surface heating processes. We have developed a model which differs from models created previously for this purpose, because it includes sensible and latent heating. Tests of this model using field data indicate that it accurately determines the surface heating. When the model is used with field measurements of meteorological variables and is combined with remotely sensed temperature data, a thermal inertia image can be produced. References Arakawa, A., A. Katayama, Y. Mintz, Numerical simulation of the general circulation of the atmosphereSymposium on Numerical Weather PredictionWorld Meteorol. Organ., Int. Union of Geod. and Geophys.Tokyo, 1968. Budyko, M. I., The Heat Balance of the Earth ( in Russian),Leningrad,1956. (English translation by N. A. Stepanova, Office of Technical Services, U.S. Department of Commerce,Washington, D. C.,1958.). Burke, C. J., Transformation of polar continental air to polar maritime air, J. Meteorol., 2, 94–112, 1945. Carnahan, B., H. A. Luther, J. O. Wilkes, Applied Numerical Methods, John Wiley, New York, 1969. Gates, W. L., E. S. Batten, A. B. Kahle, A. B. Nelson, A documentation of the Mintz-Arakawa two-level atmospheric general circulation modelRep. R-877-ARPARand Corp., Santa Monica, Calif., 1971. Gillespie, A. R., A. B. Kahle, The construction and interpretation of a digital thermal inertia image, Photogramm. Eng. Remote Sensing, 1977. Goetz, A. F. H., F. C. Billingsley, A. R. Gillespie, M. J. Abrams, R. L. Squires, E. M. Shoemaker, I. Lucchita, D. P. Elston, Application of Erts images and image processing to regional geologic problems and geologic mapping in northern ArizonaNASA-JPL Tech. Rep. 32-1597 15 May, 1975. Idso, S. B., R. D. Jackson, R. J. Reginato, Estimating evaporation: A technique adaptable to remote sensing, Science, 189, 991–992, 1975a. Idso, S. B., T. J. Schmugge, R. D. Jackson, R. J. Reginato, The utility of surface temperature measurements for the remote sensing of soil water status, J. Geophys. Res., 80, 3044–3049, 1975b. Jaeger, J. C., Conduction of heat in a solid with periodic boundary conditions, with an application to the surface temperature of the moon, Proc. Cambridge Phil. Soc., 492, 355–359, 1953. Joseph, J. H., Calculation of radiative heating in numerical general circulation models, Numerical Simulation of Weather and ClimateTech. Rep. 1Dep. of Meteorol., Univ. of Calif., Los Angeles, 1966. Joseph, J. H., On the calculation of solar radiation fluxes in the troposphere, Solar Energy, 13, 251–261, 1971. Kahle, A. B., A. R. Gillespie, A. F. H. Goetz, Thermal inertia imaging: A new geologic mapping tool, Geophys. Res. Lett., 3, 26–28, 1976. Kondratyev, K. Ya., Radiation in the Atmosphere, 562, Academic, New York, 1969. LeSchack, L. A., N. K. DelGrande, S. I. Outcalt, J. Lewis, C. Jenner, Correlation of dual-channel airborne IR data with soil moisture measurements, final reportDevelop. and Resour. Transp. Co., Silver Spring, Md.May, 1975. Malkus, J. S., Large-scale interactions, The Sea M. N. Hill, 109, Interscience, New York, 1962. Manabe, S., F. Möller, On the radiative equilibrium and heat balance of the atmosphere, Mon. Weather Rev., 89, 503–532, 1961. Marsh, S. E., The feasibility of satellite thermal infrared sensing for geothermal resourcesTech. Rep. 75-12, 71Stanford Remote Sensing Lab., Stanford, Calif., 1975. Offield, T. W., Thermal-infrared images as a basis for structural mapping, Front Range and adjacent plains in Colorado, Geol. Soc. Amer. Bull., 86, 495–502, 1975. Outcalt, S. I., A reconnaissance experiment in mapping and modeling the effect of land use on urban thermal regimes, J. Appl. Meteorol., 11, 1369–1373, 1972. Pohn, H. A., T. W. Offield, K. Watson, Thermal inertia mapping from satellite—Discrimination of geologic units in Oman, J. Res. U.S. Geol. Surv., 2, 147–158, 1974. Rosema, A., Simulation of the thermal behavior of bare soils for remote sensing purposes, Heat and Mass Transfer in the Biosphere D. A. deVries, N. H. Afgan, 109–123, Scripta, Washington, D. C., 1975a. Rosema, A., A mathematical model for simulation of the thermal behavior of bare soils, based on heat and moisture transfer, Publ., 11, Neth. Interdepartmental Work. Community for the Appl. of Remote Sensing Tech., Delft, Netherlands, 1975b. Rowan, L. C., T. W. Offield, K. Watson, P. J. Cannon, R. D. Watson, Thermal infrared investigations, Arbuckle Mountains, Oklahoma, Geol. Soc. Amer. Bull., 81, 3549–3561, 1970. Sabins, F., Thermal infrared imagery and its application to structural mapping in southern California, Geol. Soc. Amer. Bull., 80, 397–404, 1969. Sinton, W. M., Temperatures on the lunar surface, in Physics and Astronomy of the Moon, edited by Z. Kopal, chap. 11,Academic,New York,1962. Thomas, J., J. P. Pedeux, C. Arnaud, Thermal infra-red technique applied to modern investigation, Geophys. Prospect., 23, 513–525, 1975. Watson, K., A computer program of thermal modeling for interpretation of infrared imagesRep. PB 203578, 33U.S. Geol. Surv., Washington, D. C., 1971. Watson, K., Periodic heating of a layer over a semi-infinite solid, J. Geophys. Res., 78, 5904–5910, 1973. Watson, K., Geologic applications of thermal infrared images, Proc. IEEE, 63, 128–137, 1975. Wesselink, A. F., Heat conductivity and nature of the lunar surface material, Bull. Astron. Inst. Neth., 10, 351–363, 1948. Citing Literature Volume82, Issue11Solid Earth and Planets10 April 1977Pages 1673-1680 ReferencesRelatedInformation

Referência(s)