The KROX-20 transcription factor in the rat central and peripheral nervous systems: novel expression pattern of an immediate early gene-encoded protein
1993; Elsevier BV; Volume: 57; Issue: 1 Linguagem: Inglês
10.1016/0306-4522(93)90110-2
ISSN1873-7544
AutoresThomas Herdegen, Marika Kiessling, Sylvia Bele, R Bravo, M. Zimmermann, P. Gass,
Tópico(s)Ubiquitin and proteasome pathways
ResumoThe KROX-20 protein (also termed EGR-2) is encoded by an immediate early gene cloned by cross-hybridization to the Drosophila melanogaster Kru¨ppel gene. It belongs to a class of transcription factors with zinc finger motifs and binding activity to a transcriptional regulatory DNA element termed the early growth response consensus sequence. In the present study the temporospatial expression of KROX-20 was investigated in the central and peripheral nervous systems of normal rats and after various stimuli known to induce immediate early genes, including epileptic seizures, axotomy, pharmacological treatment with glutamate and alpha-adrenergic receptor antagonists, and peripheral noxious stimulation. Immunocytochemistry was performed with a specific polyclonal antiserum generated against a fusion protein containing KROX-20 sequences. In the central nervous system, KROX-20 protein demonstrated distinct constitutive nuclear expression in specific neuronal subpopulations of the cortex, septum, amygdala, olfactory bulb and hypothalamus. In addition, distinct cytoplasmic immunoreactivity was present in spinal and medullary motoneurons, dorsal root ganglion neurons and a few neuronal cell populations of midbrain and forebrain. In the CNS, KROX-20 was only induced by bicuculline-induced epileptic seizures. Topographically, the postictal increase of KROX-20 levels was restricted to areas with constitutive expression, such as cerebral cortex, fornix and amygdala. Induction of KROX-20 peaked at 4–8 h after onset of seizure activity. No increase in immunoreactivity was observed in the hippocampus, the brain region most severely affected by bicuculline-induced seizures. Transection of central and peripheral nerve fibers did not result in KROX-20 induction in axotomized neurons. However, KROX-20 was induced in Schwann-like cells after transection of the sciatic nerve. In contrast to KROX-20, KROX-24, a related transcription factor of the zinc finger family, was markedly induced in hippocampal and spinal neurons following seizures and peripheral noxious stimulation, respectively, as well as in CNS neurons following axotomy. Our data indicate that KROX-20 represents an immediately early gene product with basal expression in selected neuronal populations of the nervous system and a restricted inducibility after intentional stimuli.
Referência(s)