Artigo Acesso aberto Revisado por pares

The Resistance of Esophageal Adenocarcinoma to Bile Salt Insult is Associated with Manganese Superoxide Dismutase Expression

2010; Elsevier BV; Volume: 171; Issue: 2 Linguagem: Inglês

10.1016/j.jss.2010.04.038

ISSN

1095-8673

Autores

Suzanne Schiffman, Yan Li, Deyi Xiao, Xuanshe Li, Harini S. Aiyer, Robert C.G. Martin,

Tópico(s)

Drug Transport and Resistance Mechanisms

Resumo

Background Bile acids are implicated as etiologic agents in esophageal cancer. We sought to analyze the impact of bile acid exposure on esophageal epithelial cells, Barrett's metaplastic cells (BE), esophageal adenocarcinoma cells (EAC), and esophageal squamous carcinoma cell (ESC). We sought to determine if cellular resistance is related to manganese superoxide dismutase expression. Methods Cells were exposed to sodium choleate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), sodium taurocholate (TCA), or a 1:1 mixture (MIX) of reagents at concentrations in the range 0.2–0.8 mM. Cell viability was evaluated by MTT assay. Manganese superoxide dismutase (MnSOD) expression was analyzed by Western blot. Statistical analysis was performed using SPSS ver. 17.0, SPSS Inc., Chicago, IL. Results Bile salt exposure inhibited cell viability in esophageal squamous cells in time- and growth-dependent manner. There was a 50% decrease in cell viability from 4 to 24 h. BE, EAC, and ESC cell lines were more resistant to bile insult. In untreated cell lines, MnSOD expression was significantly decreased in EAC and ESC cell lines compared with esophageal squamous epithelial cells and BE cells (P = 0.002). Exposure of ESC cells to bile salt increased MnSOD expression. Conclusion The confirmation of the role of reactive oxygen species (ROS) and bile acids in esophageal carcinogenesis has interesting implications for chemoprevention in patients with reflux esophagitis and Barrett's esophagus. Further studies are necessary to assess the preventative role of antioxidant supplementation. Bile acids are implicated as etiologic agents in esophageal cancer. We sought to analyze the impact of bile acid exposure on esophageal epithelial cells, Barrett's metaplastic cells (BE), esophageal adenocarcinoma cells (EAC), and esophageal squamous carcinoma cell (ESC). We sought to determine if cellular resistance is related to manganese superoxide dismutase expression. Cells were exposed to sodium choleate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), sodium taurocholate (TCA), or a 1:1 mixture (MIX) of reagents at concentrations in the range 0.2–0.8 mM. Cell viability was evaluated by MTT assay. Manganese superoxide dismutase (MnSOD) expression was analyzed by Western blot. Statistical analysis was performed using SPSS ver. 17.0, SPSS Inc., Chicago, IL. Bile salt exposure inhibited cell viability in esophageal squamous cells in time- and growth-dependent manner. There was a 50% decrease in cell viability from 4 to 24 h. BE, EAC, and ESC cell lines were more resistant to bile insult. In untreated cell lines, MnSOD expression was significantly decreased in EAC and ESC cell lines compared with esophageal squamous epithelial cells and BE cells (P = 0.002). Exposure of ESC cells to bile salt increased MnSOD expression. The confirmation of the role of reactive oxygen species (ROS) and bile acids in esophageal carcinogenesis has interesting implications for chemoprevention in patients with reflux esophagitis and Barrett's esophagus. Further studies are necessary to assess the preventative role of antioxidant supplementation.

Referência(s)