A Novel Wilms Tumor 1 (WT1) Target Gene Negatively Regulates the WNT Signaling Pathway
2010; Elsevier BV; Volume: 285; Issue: 19 Linguagem: Inglês
10.1074/jbc.m109.094334
ISSN1083-351X
AutoresMyoung Shin Kim, Seung Kew Yoon, Frank Bollig, Jirouta Kitagaki, Wonhee Hur, Nathan J. Whye, Yunping Wu, Miguel N. Rivera, Jik Young Park, Ho-Shik Kim, Karim Malik, Daphne W. Bell, Christoph Englert, Alan O. Perantoni, Sean Bong Lee,
Tópico(s)Renal cell carcinoma treatment
ResumoMammalian kidney development requires the functions of the Wilms tumor gene WT1 and the WNT/beta-catenin signaling pathway. Recent studies have shown that WT1 negatively regulates WNT/beta-catenin signaling, but the molecular mechanisms by which WT1 inhibits WNT/beta-catenin signaling are not completely understood. In this study, we identified a gene, CXXC5, which we have renamed WID (WT1-induced Inhibitor of Dishevelled), as a novel WT1 transcriptional target that negatively regulates WNT/beta-catenin signaling. WT1 activates WID transcription through the upstream enhancer region. In the developing kidney, Wid and Wt1 are coexpressed in podocytes of maturing nephrons. Structure-function analysis demonstrated that WID interacts with Dishevelled via its C-terminal CXXC zinc finger and Dishevelled binding domains and potently inhibits WNT/beta-catenin signaling in vitro and in vivo. WID is evolutionarily conserved, and ablation of wid in zebrafish embryos with antisense morpholino oligonucleotides perturbs embryonic kidney development. Taken together, our results demonstrate that the WT1 negatively regulates WNT/beta-catenin pathway via its target gene WID and further suggest a role for WID in nephrogenesis.
Referência(s)