Artigo Acesso aberto Revisado por pares

Development and Nonlinear Analysis of Dynamic Plant Models in ProMoT /Diana

2014; Wiley; Volume: 86; Issue: 7 Linguagem: Inglês

10.1002/cite.201400003

ISSN

1522-2640

Autores

Michael Mangold, Dmytro Khlopov, Gerrit Danker, Stefan Palis, Volodymyr Svjatnyj, Achim Kienle,

Tópico(s)

Modeling and Simulation Systems

Resumo

Chemie Ingenieur TechnikVolume 86, Issue 7 p. 1107-1116 Research Article Development and Nonlinear Analysis of Dynamic Plant Models in ProMoT /Diana Prof. Michael Mangold, Corresponding Author Prof. Michael Mangold [email protected] Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanyMax Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany===Search for more papers by this authorDmytro Khlopov, Dmytro Khlopov Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanySearch for more papers by this authorDr. Gerrit Danker, Dr. Gerrit Danker Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanySearch for more papers by this authorDr. Stefan Palis, Dr. Stefan Palis Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, GermanySearch for more papers by this authorProf. Volodymyr Svjatnyj, Prof. Volodymyr Svjatnyj Donetsk National Technical University, Faculty of Computer Science and Technology, Artema Street 58, 83001 Donetsk, UkraineSearch for more papers by this authorProf. Achim Kienle, Prof. Achim Kienle Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, GermanySearch for more papers by this author Prof. Michael Mangold, Corresponding Author Prof. Michael Mangold [email protected] Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanyMax Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany===Search for more papers by this authorDmytro Khlopov, Dmytro Khlopov Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanySearch for more papers by this authorDr. Gerrit Danker, Dr. Gerrit Danker Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, GermanySearch for more papers by this authorDr. Stefan Palis, Dr. Stefan Palis Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, GermanySearch for more papers by this authorProf. Volodymyr Svjatnyj, Prof. Volodymyr Svjatnyj Donetsk National Technical University, Faculty of Computer Science and Technology, Artema Street 58, 83001 Donetsk, UkraineSearch for more papers by this authorProf. Achim Kienle, Prof. Achim Kienle Max Planck Institute for Complex Dynamical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, GermanySearch for more papers by this author First published: 11 June 2014 https://doi.org/10.1002/cite.201400003Citations: 11AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In the process design of chemical production plants, dynamic simulation plays an important role. This paper gives a short introduction to the process modeling tool ProMoT and the simulation tool Diana. Both are open-source programs intended for the dynamic analysis of chemical engineering and biological systems. They support the implementation and analysis of large nonlinear differential algebraic systems. An overview is given on the functionality of ProMoT and Diana. The use of the tools is illustrated by their application to an innovative fluidized bed crystallization process. References 1 R. Schreiber, Scholarpedia 2007, 2 (7), 2929. DOI: 10.4249/scholarpedia.2929 10.4249/scholarpedia.2929 Google Scholar 2 www.gnu.org/software/octave (accessed on April 25, 2014). Google Scholar 3 www.scilab.org (accessed on April 25, 2014). Google Scholar 4 www.psenterprise.com/gproms.html (accessed on April 25, 2014). Google Scholar 5 www.aspentech.com/products/aspen-plus.aspx (accessed on April 25, 2014). Google Scholar 6 M. Tiller, Introduction to Physical Modeling with Modelica, Kluwer Academic Publishers, Dordrecht 2001. Google Scholar 7 F. Tränkle, M. Zeitz, M. Ginkel, E. D. Gilles, Math. Comput. Model. Dyn. Syst. 2000, 6 (3), 283 – 307. 10.1076/1387-3954(200009)6:3;1-I;FT283 Web of Science®Google Scholar 8 M. Ginkel, A. Kremling, T. Nutsch, R. Rehner, E. D. Gilles, Bioinformatics 2003, 19 (9), 1169 – 1176. 10.1093/bioinformatics/btg128 CASPubMedWeb of Science®Google Scholar 9 S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, E. D. Gilles, Bioinformatics 2009, 25 (5), 687 – 689. 10.1093/bioinformatics/btp029 CASPubMedWeb of Science®Google Scholar 10 M. Krasnyk, K. Bondareva, O. Milokhov, K. Teplinskiy, M. Ginkel, A. Kienle, in Proc. of the 16th European Symp. on Computer Aided Process Engineering, Elsevier, Amsterdam 2006. Google Scholar 11 M. Krasnyk, M. Ginkel, M. Mangold, A. Kienle, Comput. Chem. Eng. 2007, 31, 1100 – 1110. 10.1016/j.compchemeng.2006.09.010 CASWeb of Science®Google Scholar 12 M. Krasnyk, Ph.D. Thesis, Otto-von-Guericke-University Magdeburg 2008. Google Scholar 13 R. Kelling, G. Kolios, C. Tellaeche, U. Wegerle, V. Zahn, A. Seidel-Morgenstern, Chem. Eng. Sci. 2012, 83, 138 – 148. 10.1016/j.ces.2011.11.047 CASWeb of Science®Google Scholar 14 M. Mangold, A. Bück, R. Schenkendorf, C. Steyer, A. Voigt, K. Sundmacher, Chem. Eng. Sci. 2009, 64, 646 – 660. 10.1016/j.ces.2008.05.039 CASWeb of Science®Google Scholar 15 M. Mangold, M. Krasnyk, K. Sundmacher, Chem. Eng. Sci. 2004, 59, 4869 – 4877. 10.1016/j.ces.2004.07.094 CASWeb of Science®Google Scholar 16 K. Kolczyk, R. Samaga, H. Conzelmann, S. Mirschel, C. Conradi, BMC Bioinf. 2012, 13, 251. 10.1186/1471-2105-13-251 Web of Science®Google Scholar 17 S. Mirschel, K. Steinmetz, A. Kremling, in Proc. of 6th Vienna Conf. on Mathematical Modelling, MATHMOD, Vienna, 2009. Google Scholar 18 www.mpi-magdeburg.mpg.de/projects/promot/ (accessed on April 25, 2014). Google Scholar 19 www.mpi-magdeburg.mpg.de/projects/diana/ (accessed on April 25, 2014). Google Scholar 20 R. J. Fateman, P. N. de Souza, J. Moses, C. Yapp, The Maxima Book, 2004. http://maxima.sourceforge.net. Google Scholar 21 M. Mangold, A. Kienle, K. D. Mohl, E. D. Gilles, Chem. Eng. Sci. 2000, 55, 441 – 454. 10.1016/S0009-2509(99)00341-3 CASWeb of Science®Google Scholar 22 M. Hucka et al., Bioinformatics 2003, 19 (4), 524 – 531. 10.1093/bioinformatics/btg015 CASPubMedWeb of Science®Google Scholar 23 M. Jarke, J. Köller, B. Braunschweig, W. Marquardt, L. von Wedel, in Proc. of 1st IEEE Conf. on Standardisation and Innovation in Information Technology, IEEE, Piscataway, NJ 1999. Google Scholar 24 www.python.org (accessed on April 25, 2014). Google Scholar 25 J. Dongarra, Int. J. High Perform. Appl. Supercomput. 2002, 16 (1), 1 – 111. 10.1177/10943420020160010101 Web of Science®Google Scholar 26 G. H. Golub, C. F. van Loan, Matrix Computations, John Hopkins University Press, Baltimore, 1996. Google Scholar 27 T. A. Davis, ACM Trans. Math. Software 2004, 30, 196 – 199. 10.1145/992200.992206 Web of Science®Google Scholar 28 R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK Users' Guide, SIAM, Englewood Cliffs, 1998. Google Scholar 29 A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, C. S. Woodward, ACM Trans. Math. Software 2005, 31 (3), 363 – 396. 10.1145/1089014.1089020 Web of Science®Google Scholar 30 S. Li, L. R. Petzold, J. Comput. Appl. Math. 2000, 125 (1 – 2), 131 – 145. 10.1016/S0377-0427(00)00464-7 Web of Science®Google Scholar 31 J. R. Leis, M. A. Kramer, ACM Trans. Math. Software 1988, 14 (1), 61 – 67. 10.1145/42288.214371 Web of Science®Google Scholar 32 U. Nowak, L. Weimann, A Family of Newton Codes for Systems of Highly Nonlinear Equations, Technical Report, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1991. Google Scholar 33 A. Wächter, L. Biegler, Math. Program. 2006, 106 (1), 25 – 57. 10.1007/s10107-004-0559-y Web of Science®Google Scholar 34 J. A. Nelder, R. Mead, Comput. J. 1965, 7 (4), 308 – 313. 10.1093/comjnl/7.4.308 Web of Science®Google Scholar 35 C. D. Perttunen, D. R. Jones, B. E. Stuckman, J. Optim. Theory Appl. 1993, 79 (1), 157 – 181. 10.1007/BF00941892 Web of Science®Google Scholar 36 J. Mockus, W. Eddy, A. Mockus, Bayesian Heuristic Approach To Discrete and Global Optimization, Kluwer Academic Publishers, Dordrecht, 2000. Google Scholar 37 G. M. Shroff, H. B. Keller, SIAM J. Num. Anal. 1993, 30 (4), 1099 – 1120. 10.1137/0730057 Web of Science®Google Scholar 38 K. Lust, Ph.D. Thesis, Katholieke Universiteit Leuven 1997. Google Scholar 39 H. Tung, Crystallization of Organic Compounds: An Industrial Perspective, Wiley, Hoboken 2009. Google Scholar 40 D. Binev, H. Lorenz, A. Seidel-Morgenstern, in Produktgestaltung in der Partikeltechnologie, Fraunhofer Verlag, Stuttgart, 2011. Google Scholar 41 D. Binev, H. Lorenz, A. Seidel-Morgenstern, 18th Int. Workshop on Industrial Crystallization (BIWIC 2011), TU Delft, September 2011. Google Scholar 42 D. Binev, H. Lorenz, A. Seidel-Morgenstern, 19th Int. Workshop on Industrial Crystallization (BIWIC 2012), Tianjin, September 2012. Google Scholar 43 S. Palis, D. Binev, H. Lorenz, A. Seidel-Morgenstern, A. Kienle, 20th Int. Workshop on Industrial Crystallization (BIWIC 2013), Odense, September 2013. Google Scholar 44 M. Mangold, M. Ginkel, E. D. Gilles, Comput. Chem. Eng. 2004, 28, 319 – 332. 10.1016/S0098-1354(03)00189-3 CASWeb of Science®Google Scholar 45 R. Hanke, M. Mangold, K. Sundmacher, Fuel Cells 2005, 5, 133 – 147. 10.1002/fuce.200400069 CASWeb of Science®Google Scholar 46 R. Radichkov, T. Müller, A. Kienle, S. Heinrich, M. Peglow, L. Möhrl, Chem. Eng. Process. 2006, 45 (10), 826 – 837. 10.1016/j.cep.2006.02.003 CASWeb of Science®Google Scholar 47 S. Palis, A. Kienle, Chem.Eng. Sci. 2012, 70, 200 – 209. 10.1016/j.ces.2011.08.026 CASWeb of Science®Google Scholar Citing Literature Volume86, Issue7Special Issue:Informationstechnologien in der VerfahrenstechnikJuly, 2014Pages 1107-1116 ReferencesRelatedInformation

Referência(s)