Artigo Revisado por pares

Peering into the Self-Assembly of Surfactant Templated Thin-Film Silica Mesophases

2003; American Chemical Society; Volume: 125; Issue: 38 Linguagem: Inglês

10.1021/ja0295523

ISSN

1943-2984

Autores

Dhaval Doshi, Alain Gibaud, Valérie Goletto, Mengcheng Lu, Henry Gerung, B. M. Ocko, Sang M. Han, C. Jeffrey Brinker,

Tópico(s)

Diatoms and Algae Research

Resumo

It is now recognized that self-assembly is a powerful synthetic approach to the fabrication of nanostructures with feature sizes smaller than achievable with state of the art lithography and with a complexity approaching that of biological systems. For example, recent research has shown that silica/surfactant self-assembly combined with evaporation (so-called evaporation induced self-assembly EISA) can direct the formation of porous and composite thin-film mesostructures characterized by precise periodic arrangements of inorganic and organic constituents on the 1-50-nm scale. Despite the potential utility of these films for a diverse range of applications such as sensors, membranes, catalysts, waveguides, lasers, nano-fluidic systems, and low dielectric constant (so-called low k) insulators, the mechanism of EISA is not yet completely understood. Here, using time-resolved grazing incidence small-angle X-ray scattering (GISAXS) combined with gravimetric analysis and infrared spectroscopy, we structurally and compositionally characterize in situ the evaporation induced self-assembly of a homogeneous silica/surfactant/solvent solution into a highly ordered surfactant-templated mesostructure. Using CTAB (cetyltrimethylammonium bromide) as the structure-directing surfactant, a two-dimensional (2-D) hexagonal thin-film mesophase (p6mm) with cylinder axes oriented parallel to the substrate surface forms from an incipient lamellar mesophase through a correlated micellar intermediate. Comparison with the corresponding CTAB/water/alcohol system (prepared without silica) shows that, for acidic conditions in which the siloxane condensation rate is minimized, the hydrophilic and nonvolatile silicic acid components replace water maintaining a fluidlike state that avoids kinetic barriers to self-assembly.

Referência(s)