Preliminary results from the trimoored internal wave experiment (IWEX)
1975; American Geophysical Union; Volume: 80; Issue: 27 Linguagem: Inglês
10.1029/jc080i027p03872
ISSN2156-2202
Autores Tópico(s)Reservoir Engineering and Simulation Methods
ResumoJournal of Geophysical Research (1896-1977)Volume 80, Issue 27 p. 3872-3884 Preliminary results from the trimoored internal wave experiment (IWEX) Melbourne G. Briscoe, Melbourne G. BriscoeSearch for more papers by this author Melbourne G. Briscoe, Melbourne G. BriscoeSearch for more papers by this author First published: 20 September 1975 https://doi.org/10.1029/JC080i027p03872Citations: 77AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A three-dimensional array of 20 current meters, temperature sensors, and vertical temperature gradient sensors was successfully deployed for 40 days in late 1973 in the main thermocline over the Hatteras Abyssal Plain southeast of Bermuda. Sensor spacings in the main array were 1.4–1600 m in the horizontal, 2.1–1447 m in the vertical. The minimum sampling interval was 225 s. The ultimate purpose of the experiment was to estimate a vector wave number-frequency spectrum of internal waves without the usual assumptions of simple modal structure, horizontal isotropy, and linearity. The purpose of this paper is to describe some of the early results. Autospectra from the array normalize quite well in depth according to the WKBJ 'high-mode' solutions. Spectra of vertical displacements show a significant contribution from the internal semidiurnal tide. Samples of 1760 cross spectra calculated (based on a 40-day averaging interval) suggest horizontal isotropy, vertical homogeneity, and a possible degradation of current coherences because of fine structure in the velocity profile. Coherence of vertical displacements (i.e., temperature fluctuations) for measurements separated horizontally decays with increasing separation according to ƒ1/2X = 330 m·cph, where ƒ1/2 (cph) is the frequency at which the coherence falls to one half and X (m) is the horizontal separation. This empirical rule is based on 1600 m > X > 140 m; for smaller X, ƒ1/2 exceeds the local buoyancy frequency. Autospectra and cross spectra of vertical displacements sometimes show peaks at frequencies just less than the local buoyancy frequency; current spectra do not show such peaks. Inverse modeling of the internal wave field is in progress; expected results are a vector wave number-frequency spectrum and a description in parameter space that hopefully will permit future experiments to be less elaborate. References Amos, D. E., L. H. Koopmans, Tables of the distribution of the coefficient of coherence for stationary bivariant Gaussian processesSCR-483Sandia Corp., Albuquerque, N. Mex., 1963. Bell, T. H., Numerical calculation of dispersion relations for internal gravity wavesRep. 7294Nav. Res. Lab., Washington, D.C., 1971. Bendat, J. S., A. G. Piersol, Random Data, 388, Interscience, New York, 1971. Briscoe, M. G., A note on internal gravity wave spectra, J. Geophys. Res., 77, 3278–3280, 1972. Briscoe, M. G., Near-surface experiment at Mode site, Mode Hot Line News47, 3, 1974. Briscoe, M. G., Internal waves in the ocean, Rev. Geophys. Space Phys., 1975. Brown, N. L., A precision CTD microprofiler, Ocean 74, 2, 270–278, 1974. Cairns, J. L., Internal wave measurements from a midwater float, J. Geophys. Res., 80, 299–313, 1975. Carter, G. C., C. H. Knapp, A. H. Nuttall, Statistics of the estimate of the magnitude-coherence function, IEEE Trans. Audio Electroacoust., AU-21, 388–389, 1973. Desaubies, Y. J. F., A linear theory of internal wave spectra and coherences near the Väisälä frequency, J. Geophys. Res., 80, 895–899, 1975. Fofonoff, N. P., Spectral characteristics of internal waves in the ocean, Deep Sea Res., 16, 58–71, 1969. Fofonoff, N. P., F. Webster, Current measurements in the western Atlantic, Phil. Trans. Roy. Soc. London, Ser. A, 270, 423–436, 1971. Garrett, C., The effect of internal wave strain on vertical spectra of fine-structure, J. Phys. Oceanogr., 3, 83–85, 1973. Garrett, C., W. Munk, Space-time scales of internal waves, Geophys. Fluid Dyn., 3, 225–264, 1972. Garrett, C., W. Munk, Space-time scales of internal waves' A progress report, J. Geophys. Res., 80, 291–297, 1975. Gold, B., C. M. Rader, Digital Processing of Signals, 199–200, McGraw-Hill, New York, 1969. Goodman, N. R., On the joint estimation of the spectra, cospectrum and quadrature spectrum of a two-dimensional stationary Gaussian process, Sci. Pap., 10, Eng. Statist. Lab., N.Y. Univ., N.Y., 1957. Görtler, H., Über eine Schwingungserscheinung in Flüssigkeiten mit stabiler Dichteschichtung, Z. Angew. Math. Mech., 23, 65–71, 1943. Gould, W. J., Spectral characteristics of some deep current records from the eastern North Atlantic, Phil. Trans. Roy. Soc. London, Ser. A, 270, 437–450, 1971. Hayes, S. P., Preliminary measurements of the time-lagged coherence of vertical temperature profiles, J. Geophys. Res., 80, 307–311, 1975. Hayes, S. P., T. M. Joyce, R. C. Millard Jr., Measurements of vertical fine structure in the Sargasso Sea, J. Geophys. Res., 80, 314–319, 1975. Heinmiller, R. H., W. J. Schmitz, M. G. Briscoe, Scientific needs for moored instrumentation, Proceedings, Tenth Annual Conference, 3–15Marine Technology Society, Washington, D.C., 1974. Hovem, J. M., (sin x)/x interpolation of sampled signalsTR196NATO SACLANT ASW Res. Centre, La Spezia, Italy, 1971. Hunt, M. M., W. M. Marquet, D. A. Moller, K. R. Peal, W. K. Smith, R. C. Spindel, An acoustic navigation systemWHOI-74-6Woods Hole Oceanogr. Inst., Woods Hole, Mass., 1974. Jackson, D. D., Interpretation of inaccurate, insufficient and inconsistent data, Geophys. J. Roy. Astron. Soc., 28, 97–109, 1972. Joyce, T. M., Fine-structure contamination of moored temperature sensors: A numerical experiment, J. Phys. Oceanogr., 4, 183–190, 1974. Millard, R., CTD averages from IWEX, Mode Hot Line News52, 3, 1974. Moller, D. A., Knorr 34, October 13 to November 8, 1973, and Knorr 36, December 6 to 22, 1973WHOI-74-94Woods Hole Oceanogr. Inst., Woods Hole, Mass., 1974. Mowbray, D. E., B. S. H. Rarity, A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid, J. Fluid Mech., 28, 1–16, 1967. Müller, P., D. J. Olbers, On the dynamics of internal waves in the deep ocean, J. Geophys. Res., 8027, 1975. Nuttall, A. H., Spectral estimation by means of overlapped fast Fourier transform processing of windowed dataNUSC Rep. 4169Nav. Underwater Systems Center, New London, Conn., 1971. Panicker, N. N., Computer simulation of a tripod mooring for design and predictionWHOI-73-85Woods Hole Oceanogr. Inst., Woods Hole, Mass., 1973. Perrson, J., Variability and covariability of modified spectral estimates, IEEE Trans. Acoust. Speech Signal ProcessASSP-22, 158–160, 1974. Phillips, O. M., The Dynamics of the Upper Ocean, 173, Cambridge University Press, London, England, 1966. Sanford, T. B., Observations of the vertical structure of internal waves, J. Geophys. Res., 8027, 1975. Schott, F., J. Willebrand, On the determination of internal wave directional spectra from moored instruments, J. Mar. Res., 31, 116–134, 1973. Siedler, G., Observations of internal wave coherence in the deep ocean, Deep Sea Res., 21, 597–610, 1974. Turner, J. S., Buoyancy Effects in Fluids, 24, Cambridge University Press, London, England, 1973. Walden, R. G., H. O. Berteaux, Design and performance of a deep-sea tri-moor, Proceedings, Tenth Annual Conference, 81–96Marine Technology Society, Washington, D.C., 1974. Webster, F., Estimates of the coherence of ocean currents over vertical distances, Deep Sea Res., 19, 35–44, 1972. Welch, P. D., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodigrams, IEEE Trans. Audio Electroacoust., AU-15, 70–73, 1967. Wiggins, R. A., The general linear inverse problem: Implication of surface waves and free oscillations for earth structure, Rev. Geophys. Space Phys., 10, 251–285, 1972. Wunsch, C., J. Dahlen, A moored temperature and pressure recorder, Deep Sea Res., 21, 145–154, 1974. Zenk, W., Temperature variability below the mixed layer in the Model area, Mode Hot Line News61, 5, 1974. Citing Literature Volume80, Issue27Oceans20 September 1975Pages 3872-3884 ReferencesRelatedInformation
Referência(s)