Revisão Acesso aberto

Diversity among tubulin subunits: Toward what functional end?

1990; Wiley; Volume: 16; Issue: 3 Linguagem: Inglês

10.1002/cm.970160302

ISSN

1097-0169

Autores

Harish C. Joshi, Don W. Cleveland,

Tópico(s)

14-3-3 protein interactions

Resumo

Cell MotilityVolume 16, Issue 3 p. 159-163 View and ReviewFree Access Diversity among tubulin subunits: Toward what functional end? Dr. Harish C. Joshi, Corresponding Author Dr. Harish C. Joshi Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MarylandDept. of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322Search for more papers by this authorDon W. Cleveland, Don W. Cleveland Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MarylandSearch for more papers by this author Dr. Harish C. Joshi, Corresponding Author Dr. Harish C. Joshi Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MarylandDept. of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322Search for more papers by this authorDon W. Cleveland, Don W. Cleveland Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MarylandSearch for more papers by this author First published: 1990 https://doi.org/10.1002/cm.970160302Citations: 87AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Adachi, Y., Toda, T., Niwa, O., and Yanagida, M. (1986): Differential expression of essential and nonessential α-tubulin genes in Schizosaccharomyces pombe. Mol. Cell. Biol. 6: 2168–2178. Arai, T., and Matsumoto, G. (1988): Subcellular localization of functionally differentiated microtubules in squid neurons: Regional distribution of microtubule-associated proteins and β-tubulin isotypes: J. Neurochem. 51: 1825–1838. Barra, H. S., Arce, C. A., Rodriguez, J. A., and Caputo, R. (1973): A soluble preparation from rat brain that incorporates into it's own proteins (14C)-arginine by a ribonuclease-sensitive system and (14C)-tyrosine by a ribonuclease insensitive system. J. Neurochem. 20: 97–108. Edde, B., Jeantet, C., and Gros, F. (1981): One β-tubulin subunit accumulates during neurite outgrowth in mouse neuroblastoma cells. Biochem. Biophys. Res. Commun. 3: 1035–1043. Edde, B., Rossier, J., Le Caer, J.-P., Desbruyeres, E., Gros, F., and Denoulet, P. (1990): Posttranslational glutamylation of α-tubulin. Science 247: 74–77. Fulton, C., and Simpson, P. A. (1976): Selective synthesis and utilization of flagellar tubulin. The multitubulin hypothesis. In R. Goldman, T. Pollard, and J. Rosenbaum (eds.): " Cell Motility." New York: Cold Spring Harbor Publications, pp. 987–1005. Gard, D. L., and Kirschner, M. W. (1985): A polymer-dependent increase in phosphorylation of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell Biol. 100: 764–774. Gu, W., Lewis, S. A., and Cowan, N. J. (1988): Generation of antisera that discriminate among mammalian β-tubulins: Introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule function. J. Cell Biol. 106: 2011–2022. Gundersen, G. G., and Bulinski, J. C. (1986): Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur. J. Cell Biol. 42: 288–294. Hoyle, H. D. and Raff, E. C. (1990): Two Drosophila β tubulin isoforms are not functionally equivalent. J. Cell Biol. (in press). Joshi, H. C., and Cleveland, D. W. (1989): Differential utilization of β-tubulin isotypes in differentiating neurites. J. Cell Biol. 109: 663–673. Joshi, H. C. Baas, P., Chu, D., and Heidemann, S. R. (1986): The cytoskeleton of neurites after microtubule depolymerization. Exp. Cell Res. 163: 223–245. Joshi, H. C., Yen, T. Y., and Cleveland, D. W. (1987): In vivo co-assembly of a divergent β-tubulin subunit (cβ6) into microtubules of different function. J. Cell Biol. 105: 2179–2190. Khawaja, S., Gundersen, G. G., and Bulinski, J. C. (1988): Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106: 141–149. Kemphues, K. J., Kaufman, T. C., Raff, R. A., and Raff, E. C. (1982): The testes-specific beta-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31: 655–670. LeDizet, M., and Piperno, G. (1987): Identification of an acetylation site of Chlamydomonas α-tubulin. Proc. Natl. Acad. Sci. U.S.A. 84: 5720–5724. Lewis, S. A., Gu, W., and Cowan, N. J. (1987): Free intermingling of mammalian β-tubulin isotypes among functionally distinct microtubules. Cell 49: 539–548. L'Hernault, S. W., and Rosenbaum, J. L. (1983): Chlamydomonas α-tubulin is post-translationally modified in the flagella during flagellar assembly. J. Cell Biol. 97: 258–269. Lopata, M. A., and Cleveland, D. W. (1987): In vivo microtubules are copolymers of available β-tubulin isotypes: Localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J. Cell Biol. 105: 1707–1720. Luduena, R. F., Zimmermann, H.-P., and Little, M. (1988): Identification of the phosphorylated β-tubulin isotype in differentiated neuroblastoma cells. FEBS Lett. 230: 142–146. May, G. S. (1989): The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable. J. Cell Biol. 109: 2267–2274. May, G. S., Tsang, M. L.-S., Smith, H., Fidel, S., and Morris, N. R. (1987): Aspergillus nidulans β-tubulin genes are unusually divergent. Gene 55: 231–243. Miller, R. H., Lasek, R. J., and Katz, M. J. (1986): Preferred microtubules for vesicle transport in lobster axon. Science 235: 220–222. Murphy, D. B., Wallis, K. T. Machlin, P. S., Ratrie, H., III, and Cleveland, D. W. (1987): The sequence and expression of the divergent β-tubulin in chicken erythrocytes. J. Biol. Chem. 262: 14305–14312. Oakley, C. E., and Oakley, B. R. (1989): Identification of γ-tubulin, a new member of tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338: 662–664. Oakley, B. R., and Oakley, C. E. (1990): The mipA (γ-tubulin) gene of Aspergillus nidulans is essential for microtubule function. Cell (in press). Pratt, L. F., and Cleveland, D. W. (1988): A survey of the α-tubulin gene family in chicken: Unexpected sequence heterogeneity in the polypeptides encoded by five expressed genes. EMBO J. 7: 931–940. Raff, E. C. (1984): Genetics of microtubule systems. J. Cell Biol. 99: 1–10. Rothwell, S. W., Grasser, W. A., and Murphy D. B. (1986): Tubulin variants exibit different assembly properties. Ann. N.Y. Acad. Sci. 466: 103–110. Savage, C., Hamelin, M., Cuolotti, J., Coulson, A., Albertson, D. G., and Chalfie, M. (1989): Mec-7 is a β-tubulin gene required for production of 15 protofilament microtubules in C. elegans. Genes Dev. (in press). Shatz, P. J., Soloman, F., and Botstein, D. (1986): Genetically essential and non-essential α-tubulin genes specify functionally interchangeable proteins. Mol. Cell Biol. 6: 3722–3733. Sisodia, S. S., Gay, D. A., and Cleveland, D. W. (1989): In vivo discrimination among β-tubulin isotypes: Selective degradation of a type IV β tubulin isotype following overexpression in cultured animal cells. New Biologist (in press). Stephens, R. (1975): Structural chemistry of the axoneme: Evidence for chemically and functionally unique tubulin dimers in outer fibers. In S. Inoue, and R. E. Stephens (eds.): " Molecules and Cell Movement." New York: Raven Press, pp. 181–206. Sullivan, K. F. (1988): Structure and utilization of tubulin isotypes. Annu. Rev. Cell Biol. 4: 687–716. Sullivan, K. F., and Cleveland, D. W. (1986): Identification of conserved isotype-defining variable region sequences for four vertebrate β-tubulin polypeptide classes. Proc. Natl. Acad. Sci. U.S.A. 83: 4327–4331. Villasante, A., Wang, D., Dobner, P., Dolph, P., Lewis, S. A., and Cowan, N. J. (1986): Six mouse α-tubulin mRNAs encode five distinct isotypes: Testis specific expression of two sister genes. Mol. Cell. Biol. 6: 2409–2419. Wang, D., Villasante, A., Lewis, S. A., and Cowan, N. J. (1986): The mammalian β-tubulin repertoire: Hematopoietic expression of a novel, heterologous β-tubulin isotype. J. Cell Biol. 103: 1903–1910. Weatherbee, J. A., May, G. S., Gambino, J., and Morris, N. R. (1985): Involvement of a particular species of β-tubulin (β3) in conidial development in Aspergillus nidulans. J. Cell Biol. 101: 706–711. Zheng, Y., and Oakley, B. R. (1989): Cloning and sequencing of a γ-tubulin cDNA from Drosophila melanogaster. J. Cell Biol. 109: 337a. Citing Literature Volume16, Issue31990Pages 159-163 ReferencesRelatedInformation

Referência(s)