Artigo Revisado por pares

Igneous and metamorphic processes associated with the formation of Chilean Ophiolites and their implication for ocean floor metamorphism, seismic layering, and magnetism

1976; American Geophysical Union; Volume: 81; Issue: 23 Linguagem: Inglês

10.1029/jb081i023p04370

ISSN

2156-2202

Autores

Charles R. Stern, Maarten J. de Wit, J.R. Lawrence,

Tópico(s)

Paleontology and Stratigraphy of Fossils

Resumo

Journal of Geophysical Research (1896-1977)Volume 81, Issue 23 p. 4370-4380 Metamorphism and Alteration of the Oceanic Crust Igneous and metamorphic processes associated with the formation of Chilean Ophiolites and their implication for ocean floor metamorphism, seismic layering, and magnetism Charles Stern, Charles SternSearch for more papers by this authorMaarten J. de Wit, Maarten J. de WitSearch for more papers by this authorJames R. Lawrence, James R. LawrenceSearch for more papers by this author Charles Stern, Charles SternSearch for more papers by this authorMaarten J. de Wit, Maarten J. de WitSearch for more papers by this authorJames R. Lawrence, James R. LawrenceSearch for more papers by this author First published: 10 August 1976 https://doi.org/10.1029/JB081i023p04370Citations: 70AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A metamorphic overprint on the pseudostratigraphy of ophiolite complexes in southern Chile shows an extremely steep vertical metamorphic gradient passing downward from zeolite to amphibolite facies in 2 km, followed by a transition to fresh gabbros. Burial metamorphism does not explain either the steep metamorphic gradient or the abrupt termination of this metamorphic effect. A combination of hydrothermal and contact metamorphism associated with circulation of seawater and igneous and tectonic activity at a spreading center can better explain these observations. Such a model is supported by 18O/16O isotope data. Disequilibrium textures indicate that spreading rapidly removes amphibolized metagabbros from the zone of effective metamorphism, while overlying rocks undergo greenschist metamorphism in a less restricted region in the vicinity of the spreading center. This model is consistent with metamorphic features displayed by other ophiolites and ocean floor metamorphism. The metamorphism produces a zone of metagabbros (amphibolites) underlain by fresh gabbros, which may account for the transition from seismic layer 3A to 3B. The amphibolites in the Chilean ophiolites contain abundant skeletal networks of secondary opaque minerals similar to those observed in ocean floor amphibolites from dredge hauls, which preserve higher-remnant magnetism than either fresh gabbros or the gabbros, dikes, and pillow lavas in the greenschist facies. A zone of amphibolitized metagabbros with high natural remnant magnetism could make a significant contribution to magnetic anomalies, particularly away from the ridge, where the remnant magnetism of the quenched lava of layer 2 is progressively reduced by metamorphism from below and weathering from above. References Anderson, R. N., Petrological significance of low heat flow on the flanks of the mid-ocean ridges, Geol. Soc. Amer. Bull., 83, 2974, 1972. Bonatti, E., Metallogenesis at oceanic spreading centers, Annu. Rev. Earth Planet. Sci., 3, 401–431, 1975. Bonatti, E., J. Honnorez, P. Kirst, F. Radicati, Metagabbros from the mid-Atlantic ridge at 06°N: Contact-hydrothermal-dynamic metamorphism beneath the axial valley, J. Geol., 83, 61–78, 1975. Bonatti, E., M. B. Guerstein-Honnorez, J. Honnorez, C. R. Stern, Hydrothermal pyrite concretions from the Romanche Trench (equatorial Atlantic): Metallogenesis in oceanic fracture zones, Earth Planet. Sci. Lett., 1976. Bostrom, K., M. N. A. Peterson, O. Joensuu, D. E. Fisher, Aluminum-poor ferromanganoan sediments on active ocean ridges, J. Geophys. Res., 74, 3261–3270, 1969. Cann, J. R., Geological processes at mid-ocean ridge crests, Geophys. J. Roy. Astron. Soc., 15, 331–341, 1968. Cann, J. R., Spilites from the Carlsberg Ridge, Indian Ocean, J. Petrol., 10, 1–19, 1969. Cann, J. R., Petrology of basement rocks from Palmer Ridge, N. E. Atlantic, Phil. Trans. Roy. Soc. London, Ser. A, 268, 605–617, 1971. Christensen, N. I., Composition and evolution of the oceanic crust, Mar. Geol., 8, 139–154, 1970. Christensen, N. I., M. H. Salisbury, Structure and constitution of the lower oceanic crust, Rev. Geophys. Space Phys., 13, 57–86, 1975. Church, W. R., L. Riccio, The sheeted dike layer of the Betts Cove ophiolite complex does not represent spreading: Discussion, Can. J. Earth Sci., 11, 1491–1502, 1974. Cochran, J. R., Gravity and magnetic investigations in the Guiana Basin, western equatorial Atlantic, Geol. Soc. Amer. Bull., 84, 3249–3268, 1973. Dalziel, I. W. D., M. J. deWit, K. F. Palmer, Fossil marginal basin in the southern Andes, Nature, 215, 291–294, 1974. Dewey, J. F., Finite plate implications: Some implications for the evolution of rock masses at plate margins, Amer. J. Sci., 275A, 260–284, 1975. deWit, M. J., The geology around Bear Cove, Eastern White Bay, Newfoundland, Ph.D. thesis,Univ. of Cambridge,Cambridge, England,1972. deWit, M. J., C. R. Stern, Pillow talk, Bull. Volcanol., 1976. Dymond, J., J. B. Corliss, G. R. Heath, G. W. Field, E. J. Dasch, H. H. Veck, Origin of metalliferous sediments from the Pacific Ocean, Geol. Soc. Amer. Bull., 84, 3355–3372, 1973. Fox, P. J., N. D. Opdyke, Geology of the oceanic crust: Magnetic properties of oceanic rocks, J. Geophys. Res., 78, 5139–5154, 1973. Fox, P. J., E. Schreiber, J. J. Peterson, The geology of the oceanic crust: Compressional wave velocities of oceanic rocks, J. Geophys. Res., 78, 5155–5171, 1973. Gass, I. G., Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor?, Nature, 220, 39–42, 1968. Gass, I. G., J. D. Smewing, Intrusion, extrusion and metamorphism at constructive margins: Evidence from the Troodos Massif, Cyprus, Nature, 242, 26–29, 1973. Greenbaum, D., Magnetic processes at oceanic ridges: Evidence from the Troodos Massif, Cyprus, Nature, 238, 18–21, 1972. Honnorez, J., E. Bonatti, Petrology and petrotectonic setting of the mylonites from the equatorial mid-Atlantic fracture zones16th General Assembly, Int. Union of Geod. and GeophysGrenoble, FranceAug.-Sept., 1975. Hynes, A., Notes on the petrology of some ophiolites, Othris Mountains, Greece, Contrib. Mineral. Petrol., 46, 233–239, 1974. Irving, E., The mid-Atlantic ridge at 45oN, 14, Oxidation and magnetic properties of basalts, review and discussion, Can. J. Earth Sci., 7, 1528–1538, 1970. Larson, P. A., J. D. Mudie, R. L. Larson, Magnetic anomalies and fracture-zone trends in the Gulf of California, Geol. Soc. Amer. Bull., 83, 3361–3368, 1972. Lister, C. R. B., On the thermal balance of a mid-oceanic ridge, Geophys. J. Roy. Astron. Soc., 26, 515–535, 1972. Lowrie, W. R., R. Lovlie, N. D. Opdyke, The magnetic properties of deep sea drilling project basalts from the Atlantic Ocean, Earth Planet. Sci. Lett., 17, 338–349, 1973. Malpas, J., R. K. Stevens, D. F. Strong, Amphibolite associated with Newfoundland ophiolite: Its classification and tectonic significance, Geology, 1, 45–47, 1973. McBirney, A. R., I. G. Gass, Relations of oceanic volcanic rocks to mid-ocean rises and heat flow, Earth Planet. Sci. Lett., 2, 265, 1967. Melson, W. G., T. H. vanAndel, Metamorphism in the mid-Atlantic ridge, 22°N latitude, Mar. Geol., 4, 165–186, 1966. Miyashiro, A., Metamorphism and related magmatism in plate tectonics, Amer. J. Sci., 272, 629–656, 1974. Miyashiro, A., F. Shido, M. Ewing, Composition and origin of serpentinites from the mid-Atlantic ridge near 24° and 30° latitude, Contrib. Mineral. Petrol., 23, 117–127, 1969. Miyashiro, A., F. Shido, M. Ewing, Metamorphism in the mid-Atlantic ridge near 24° and 30°N, Phil. Trans. Roy. Soc. London, Ser. A, 268, 589–603, 1971. Moore, J. G., Water content of basalts erupted on the ocean floor, Contrib. Mineral. Petrol., 28, 272–279, 1972. Moores, E. M., F. J. Vine, The Troodos Massif, Cyprus and other ophiolites as oceanic crust: Evaluation and implications, Phil. Trans. Roy. Soc. London, Ser. A, 268, 443–465, 1971. Muehlenbachs, K., R. N. Clayton, Oxygen isotope geochemistry of submarine greenstones, Can. J. Earth Sci., 9, 671–678, 1972. Nicholson, R. B., G. J. Davies, Development of microstructures, Structural Characteristics of Material H. M. Finniston, Elsevier, New York, 1971. Palmason, G., K. Semundsson, Iceland in relation to the mid-Atlantic ridge, Annu. Rev. Earth Planet. Sci., 2, 25–46, 1974. Peter, G., Discussion of paper by B. P. Luyendyk, Origin of short-wavelength magnetic liberations near the ocean bottom, J. Geophys. Res., 75, 6717–6720, 1970. Peterson, J. J., P. J. Fox, E. Schreiber, Newfoundland ophiolites and the geology of the oceanic layer, Nature, 247, 194–196, 1974. Piper, D. Z., Origin of metalliferous sediments from east Pacific rise, Earth Planet. Sci. Lett., 19, 75–82, 1973. Sclater, J. G., K. D. Klitgord, A detailed heat flow, topographic, and magnetic survey across the Galapagos spreading center at 80°W, J. Geophys. Res., 78, 6951, 1973. Sclater, J. G., R. P. Von Herzen, D. L. Williams, R. N. Anderson, K. D. Klitgord, The Galapagos spreading center, heat flow on the north flank, Geophys. J. Roy. Astron. Soc., 38, 609–626, 1974. Smith, A. G., Plate tectonics and geology16th General Assembly, Int. Union of Geod. and GeophysGrenoble, FranceAug.-Sept., 1975. Spooner, E. T. C., W. S. Fyfe, Sub-seafloor metamorphism, heat and mass transfer, Contrib. Mineral. Petrol., 42, 287–304, 1973. Talwani, M., C. C. Windisch, M. G. Langseth Jr., Rekjanes ridge crest: A detailed geophysical study, J. Geophys. Res., 76, 473, 1971. Upadhyay, H. D., D. F. Strong, Geological setting of the Betts Cove copper deposits, Newfoundland: An example of ophiolite sulfide mineralization, Econ. Geol., 68, 161–167, 1973. Vallance, T. G., On the chemistry of pillow lavas and the origin of spilites, Mineral. Mag., 34, 471–481, 1965. Vine, F. J., E. M. Moores, A model for the gross structure, petrology and magnetic properties of oceanic crust, Geol. Soc. Amer. Mem., 132, 195–205, 1972. Vine, F. J., J. T. Wilson, Magnetic anomalies over a young ocean ridge off Vancouver Island, Science, 150, 485–489, 1965. Williams, D. L., R. P. Von Herzen, J. G. Sclater, R. N. Anderson, Lithospheric cooling and hydrothermal circulation on the Galapagos spreading center, Geophys. J. Roy. Astron. Soc., 383, 587, 1974. Williams, H., J. Malpas, Sheeted dikes and brecciated dike rocks within transported igneous complexes, Bay of Islands, W. New-foundland, Can. J. Earth Sci., 9, 1216–1229, 1972. Yund, R. A., R. H. McCallister, Kinetics and mechanisms of exsolution, Chem. Geol., 6, 5–30, 1970. Citing Literature Volume81, Issue23Solid Earth and Planets10 August 1976Pages 4370-4380 ReferencesRelatedInformation

Referência(s)