Revisão Revisado por pares

Naturally occurring quinones as potential bioreductive alkylating agents

1981; Wiley; Volume: 1; Issue: 3 Linguagem: Inglês

10.1002/med.2610010303

ISSN

1098-1128

Autores

Harold W. Moore, Richard Czerniak,

Tópico(s)

Synthesis and Biological Evaluation

Resumo

Medicinal Research ReviewsVolume 1, Issue 3 p. 249-280 Article Naturally occurring quinones as potential bioreductive alkylating agents Harold W. Moore, Harold W. Moore Department of Chemistry, University of California at Irvine, Irvine, California 92717 Harold W. Moore has been a membr of the faculty at the University of California, Irvine, where he now is Professor of Chemistry, since it was founded in 1965. He was born in fort Collins, CO, in 1936, and received undergraduate training at Colorado State University. His graduate studies were done at the University of Illionois with H. R. snyder, and he received further training with Karl Folkers at Stanford Research Institute before joining the faculty of U. C. Irvine. His research concerns the chemistry of organoazides, ketenes, and quinones and the synthesis and biological evaluation of bioreductive alkylating agents.Search for more papers by this authorRichard Czerniak, Richard Czerniak Department of Chemistry, University of California at Irvine, Irvine, California 92717 Richard Czerniak is currently a graduate student in the Department of Chemistry, University of California, Irvine. His research involves the synthesis of compounds which are potential bioreductive alkylating agents. He obtained his undergraduate training at Southampton College, Long Island University and joined the graduate program at the University of California, Irvine, in 1975.Search for more papers by this author Harold W. Moore, Harold W. Moore Department of Chemistry, University of California at Irvine, Irvine, California 92717 Harold W. Moore has been a membr of the faculty at the University of California, Irvine, where he now is Professor of Chemistry, since it was founded in 1965. He was born in fort Collins, CO, in 1936, and received undergraduate training at Colorado State University. His graduate studies were done at the University of Illionois with H. R. snyder, and he received further training with Karl Folkers at Stanford Research Institute before joining the faculty of U. C. Irvine. His research concerns the chemistry of organoazides, ketenes, and quinones and the synthesis and biological evaluation of bioreductive alkylating agents.Search for more papers by this authorRichard Czerniak, Richard Czerniak Department of Chemistry, University of California at Irvine, Irvine, California 92717 Richard Czerniak is currently a graduate student in the Department of Chemistry, University of California, Irvine. His research involves the synthesis of compounds which are potential bioreductive alkylating agents. He obtained his undergraduate training at Southampton College, Long Island University and joined the graduate program at the University of California, Irvine, in 1975.Search for more papers by this author First published: Autumn (Fall) 1981 https://doi.org/10.1002/med.2610010303Citations: 202 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 A. J. Lin, L. A. Cosby, C. W. Shansky, and A. C. Sartorelli, J. Med. Chem., 15, 1247 (1972). 2 A. J. Lin, R. S. Pardini, L. A. Cosby, B. J. Lillis, C. W. Shansky, and A. C. Sartorelli J. Med. Chem., 16, 1268 (1973). 3 A. J. Lin and A. C. Sartorelli, J. Org. Chem., 38, 813 (1973). 4 A. J. Lin, C. W. Shansky, and A. C. Sartorelli, J. Med. Chem., 17, 558 (1974). 5 A. J. Lin, B. J. Lillis, and A. C. Sartorelli, J. Med. Chem., 18, 917 (1975). 6 A. J. Lin and A. C. Sartorelli, J. Med. Chem., 19, 1336 (1976). 7 A. J. Lin, L. A. Cosby, and A. C. Sartorelli, in Cancer Chemotherapy, A. C. Sartorelli, Ed., Am. Chem. Soc. Symp. Ser., American Chemical Society, Washington, DC, 1976, Vol. 30, p. 71. 8 T. S. Lin, B. A. Teicher, and A. C. Sartorelli, J. Med. Chem., to appear. 9 A. J. Lin and A. C. Sartorelli, Biochem. Pharmacol., 25, 206 (1976). 10 K. A. Kennedy, B. A. Teicher, S. Rockwell, and A. C. Sartorelli, Biochem. Pharmacol., 29, 1 (1980). 11 N. R. Bachur, S. L. Gordon, M. V. Gee, and H. Kon, Proc. Natl. Acad. Sci. USA, 76, 954 (1979). 12 K. Handa and S. Sato, Gann, 66, 43 (1975). 13 J. W. Lown, H. H. Chen, S. K. Sim, and J. A. Plambeck, Bioorg. Chem., 8, 17 (1979). 14 K. A. Kennedy, S. Rockwell, and A. C. Sartorelli, Cancer Res., 40, 2356 (1980). 15 V. N. Iyer and W. Szybalski, Science, 145, 55 (1964). 16 H. W. Moore, Science, 197, 527 (1977). 17 J. F. Garden and R. H. Thomson, J. Chem. Soc., 2483 (1957). 18 D. D. Gadgil, A. V. Rama Rao, and K. Venkataraman, Tetrahedron Lett., 2223 (1968). 19 D. B. Bruce and R. H. Thomson, J. Chem. Soc., 2759 (1952). 20 P. C. Mitter and H. Biswas, Chem. Ber., 65, 622 (1932). 21 R. H. Thomson, Naturally Occurring Quinones, Academic, London, 1971, pp. 407, 458. 22 R. Hill and D. Richter, J. Chem. Soc., 1714 (1936). 23 S. Õmura, H. Tanaka, Y. Okada, and H. Marumo, Chem. Commun., 320 (1976). 24 N. Tsuji, M. Kobayashi, Y. Terui, and K. Tori, Tetrahedron, 32, 2207 (1976). 25 Y. Iwai, A. Kõra, Y. Takahashi, T. Hayashi, J. Awaya, R. Masuma, R. Oiwa, and S. Õmura, J. Antibiot., 31, 959 (1978). 26 J.St. Pyrek, O. Achmatowicz, Jr., and A. Zamojski, Tetrahedron, 33, 673 (1977). 27 S. Otten and J. P. Rosazza, Appl. Environ. Microbiol., 38, 311 (1979). 28 J. S. Driscoll, G. F. Hazard Jr., H. B. Wood Jr., and A. Goldin, Cancer Chemother. Rep. Part 2, 4, No. 2 (1974). 29 R. W. Frank, Prog. in Chem. Org. Natural Prod., 1, 38 (1979). 30 H. S. Schwartz, J. Pharmacol. Exp. Ther., 136, 250 (1962). 31 P. J. Keller, J. F. Kozlowski, and U. Hornemann, J. Am. Chem. Soc., 101, 7121 (1979). 32 S. Omura, A. Nakagawa, H. Yamada, T. Hata, A. Furusaki, and T. Watanabe, Chem. Pharmacol. Bull., 21, 931 (1973). 33 A. Stoessl, Can. J. Chem., 47, 767 (1969). 34 A. Stoessl, C. H. Unwin, and J. B. Stothers, Tetrahedron Lett., 2481 (1979). 35 P. F. Wiley, J. M. Koert, D. W. Elrod, E. A. Reisender, and V. P. Marshall, J. Antibiot., 30, 649 (1977); R. C. Kelly, I. Schletter, J. M. Koert, F. A. MacKellar, and P. F. Wiley, J. Org. Chem., 42, 3591 (1977). 36 S. Perry, Cancer Chemother. Rep. Part 1, 58, 117 (1974). 37 W. J. Pigram, W. Fuller, and L. D. Hamilton, Nature (London) New Biol., 235, 17 (1972). 38 B. K. Sinha and C. F. Chignell, Chem. Biol. Interact., 28, 301 (1979). 39 T. H. Smith, A. N. Fujiwara, D. W. Henry, and W. W. Lee, J. Am. Chem. Soc., 98, 1969 (1976). 40 V. P. Marshall, E. A. Reisender, L. M. Reineke, J. H. Johnson, and P. F. Wiley, Biochemistry, 15, 4129 (1976); R. L. Felsted, M. Gee, and N. R. Bachur, J. Biol. Chem., 249, 3672 (1974); J. Karnetova, J. Mateju, P. Sedmera, J. Vokoun, and Z. Vanek, J. Antiobiot., 29, 1199 (1976). 41 J. J. Gordon, L. M. Jackman, W. D. Ollis, and I. O. Sutherland, Tetrahedron Lett., 8, 28 (1960). 42 P. F. Wiley, D. W. Elrod, and V. P. Marshall, J. Org. Chem., 43, 3457 (1978). 43 Y. Takahashi, H. Naganawa, T. Takeuchi, H. Umezawa, T. Komiyama, T. Oki, and T. Inui, J. Antibiot., 30, 622 (1977). 44 P. F. Wiley, F. A. MacKellar, E. L. Caron, and R. B. Kelly, Tetrahedron Lett., 663 (1968); P. F. Wiley, R. B. Kelly, E. L. Caron, V. H. Wiley, J. H. Johnson, F. A. MacKellar, and S. A. Miksak, J. Am. Chem. Soc., 99, 542 (1977); B. K. Bhuyan and F. Reusser, Cancer Res., 30, 984 (1970). 45 D. E. Nettleton, Jr., W. T. Bradner, J. A. Bush, A. B. Coon, J. E. Moseley, R. W. Myllymaki, F. A. O'Herron, R. H. Schreiber, and A. L. Vulcano, J. Antibiot., 30, 525 (1977). 46 I. Kitamura, N. Shibamoto, T. Oki, T. Inui, H. Naganawa, M. Ishizuka, T. Masuda, and T. Takeuchi, J. Antibiot., 30, 616 (1977). 47 G. R. Pettit, J. J. Einck, C. L. Herald, R. H. Ode, R. B. Von Dreele, P. Brown, M. G. Brazhnikova, and G. F. Gause, J. Am. Chem. Soc., 97, 7387 (1975); G. F. Gause, M. G. Brazhnikova, and V. A. Shorin, Cancer Chemother. Rep., Part 1, 58, 255 (1974). 48 T. Oki, Y. Matsuzawa, A. Yoshimoto, K. Numata, I. Kitamura, S. Hori, A. Takamatsu, H. Umezawa, M. Ishizuka, H. Naganawa, H. Suda, M. Hamada, and T. Takeuchi, J. Antibiot., 28, 830 (1975). 49 D. B. Cosulich, J. H. Mowat, R. W. Broschard, J. B. Patrick, and W. E. Meyer, Tetrahedron Lett., 453 (1963). 50 H. Brockmann and W. Lenk, Chem. Ber., 92, 1904 (1959). 51 L. Ettlinger, E. Gaumann, R. Hütter, W. Keller-Schierlein, F. Kradolfer, L. Neipp, V. Prelog, P. Reusser, and H. Zähner, Chem. Ber., 92, 1867 (1959). 52 D. E. Nettleton, Jr., T. W. Doyle, and W. T. Bradner, U.S. Pat. 4,162,938 (1979). 53 V. H. DuVernay, J. M. Essery, T. W. Doyle, W. T. Bradner, and S. T. Crooke, Mol. Pharmacol., 15, 341 (1979). 54 M. E. Bergy, J. Antibiot., 21, 454 (1968). 55 P. Christiansen, thesis, University of Gottingen, 1970. 56 H. Brockman and P. Christiansen, Chem. Ber., 103, 708 (1970). 57 S. Barcza, M. Brufani, W. Keller-Schierlein, and H. Zähner, Helv. Chim. Acta, 49, 1736 (1966). 58 M. E. Bergy, J. H. Coats, L. J. Hanka, and L. E. Johnson, U.S. Pat. 3,300,382 (1967). See also for related activity of nanaomycin, . H. Tanaka, H. Marumo, T. Nagai, M. Okada, K. Taniguchi, and S. Õmura, J. Antibiot., 28, 860 (1975). 59 C.-J. Chang, H. G. Floss, P. Soong, and C.-T. Chang, J. Antibiot., 28, 156 (1975). 60 R. G. F. Giles and G. H. P. Roos, Tetrahedron Lett., 3093 (1977); T. Irikura, K. Ushiyama, N. Tanaka, Y. Iizuka, H. Ono, S. Sato, and H. Ogata, Jpn. Pat. 7,316,197; Chem. Abst., 79, 51823j (1973). 61 B. E. Cross, M. N. Edinberry, and W. B. Turner, J. Chem. Soc. Perkin Trans 1, 380 (1972). 62 T. Noda, T. Take, M. Otani, K. Miyauchi, T. Watanabe, and J. Abe, Tetrahedron Lett., 6087 (1968). 63 U. Sankawa, Y. Ebizuka, T. Miyazaki, Y. Isomura, H. Otsuka, S. Shibata, M. Inomata, and F. Fukuoka, Chem. Pharm. Bull., 25, 2392 (1977). 64 K. Eckardt, D. Tresselt, and W. Ihn, Tetrahedron, 34, 399, 2693 (1978). 65 M. Daurte Weinberg, O. R. Gottleib, and G. G. De Oliveira, Phytochemistry, 15, 570 (1976). 66 A. Closse and H. P. Sigg, Helv. Chim. Acta, 56, 619 (1973). 67 D. E. McIntyre, J. D. Faulkner, D. Van Engen, and J. Clardy, Tetrahedron Lett., 4163 (1979). 68 C. S. Huber, Acta Crystallogr. Sect. B, 31(1), 108 (1975). 69 F. Kavanagh, Arch. Biochem., 15, 95 (1947). 70 D. Kluepfel, H. A. Baker, G. Piattoni, S. N. Sehgal, A. Sidorowicz, K. Singh, and C. Vézina, J. Antibiot., 28, 497 (1975). 71 F. Marletti, F. D. Monache, G. B. Marini-Bettolo, M. M. De Araujo, M. Cavalcanti, I. L. D'Albuquerque, and O. G. De Lima, Gazz. Chim. ltal., 106, 119 (1976). 72 V. Přikrylová, M. Podojil, P. Sedmera, J. Vokoun, Z. Vaněk, and C. H. Hassall, J. Antibiot., 31, 855 (1978). 73 M. Sezaki, S. Kondo, K. Maeda, and H. Umezawa, Tetrahedron, 26, 5171 (1970). 74 A. Castonguay and P. Brassard, Can. J. Chem., 55, 1324 (1977). 75 V. Sequin, C. T. Bedford, S. K. Chung, and A. I. Scott, Chima, 29, 527 (1975). 76 S. N. Meloan, L. S. Valentine, and H. Puchtler, Histochemie, 27, 87 (1971). 77 T. Eisner, S. Nowicki, M. Goetz, and J. Meinwald, Science, 208, 1039 (1980). 78 N. Mihail and C. Cračiun, Naturwischenshaften, 57, 500 (1970). 79 See ref. 21, p. 459. 80 See ref. 21, p. 407; A. R. Burnett and R. H. Thomson, J. Chem. Soc. C, 2437 (1968). 81 P. Schutzenberger, Bull. Soc. Chim. Fr., 4, 12 (1865). 82 E. J. C. Brew, R. H. Thomson, J. Chem. Soc. C, 2001 (1971). 83 See ref. 21, p. 471. 84 G. Bohman, Acta Chem. Scand., 23, 2241 (1969). 85 R. G. Cooke and B. L. Johnson, Aust. J. Chem., 16, 695 (1963). 86 N. R. Lomax, V. L. Narayanan, " Chemical Structures of Interest to the Division of Cancer Treatment," National Cancer Institute Report, January 1979. 87 J. B. Harborne, Phytochemistry, 6, 1415 (1967). 88 G. J. M. van der Kerk and J. C. Overeen, Recl. Trav. Chim. Pays-Bas, 76, 425 (1957). 89 E. H. Rennie, J. Chem. Soc., 63, 1083 (1893). 90 J. H. Lister, C. H. Eugster, and P. Karrer, Helv. Chim. Acta, 38, 215 (1955). 91 H. R. V. Arnstein, A. H. Cook, and M. S. Lacey, Nature (London), 157, 333 (1946). 92 G. P. Arsenault, Tetrahedron, 24, 4745 (1968). 93 W. S. Chilton, J. Org. Chem., 33, 4299 (1968). 94 B. N. Ames, Science, 204, 587 (1979); J. T. MacGregor, L. Jurd, Mutat. Res., 54, 297 (1978); J. P. Brown and P. S. Dietrich, Mutat. Res., 66, 223 (1979). 95 M. Shamma and V. St. Georgiev, J. Pharmacol. Sci., 63 163 (1974); A. G. Schultz, Chem. Rev., 72, 385 (1973); R. E. Lyle, J. A. Bristol, M. J. Kane, and D. E. Portlock, J. Org. Chem., 38, 3268 (1973). 96 S. B. Katti, Y. N. Shuka, and J. S. Tandon, Indian J. Chem. Sect. B, 18B, 440 (1979). 97 H. S. Schwartz, Res. Commun. Chem. Pathol. Pharmacol., 10, 51 (1975); W. E. Ross, D. L. Glaubiger, and K. W. Kohn, Biochimica Biophys. Acta, 519, 23 (1978); J. W. Lown, S. K. Sim, K. C. Majumdar, and R. Y. Chang, Biochem. Biophys. Res. Commun., 76, 705 (1977). 98 J. Wilshire and D. T. Sawyer, Acc. Chem. Res., 12, 105 (1979); P. Natarajan and N. V. Raghavan, J. Am. Chem. Soc., 102, 4518 (1980). 99 S. Õmura, H. Tanaka, Y. Koyama, R. Õiwa, M. Katagiri, J. Awaya, T. Nagai, and T. Hata, J. Antibiot., 27, 363 (1974). 100 H. Tanaka, H. Marumo, T. Nagai, M. Okada, K. Taniguchi, and S. Õmura, J. Antibiot., 28, 925 (1975). 101 S. Õmura, H. Tanaka, I. Takahashi, S. Ishii, K. Mineura, K. Shirahata, and M. Kasai, Br. Pat. Appl. 2,015,525. 102 W. Keller-Schierlein, M. Brufani, and S. Barcza, Helv. Chim. Acta, 51, 1257 (1968). 103 J. C. Van Meter, M. Dann, and N. Bohonos, Antimicrob. Agents Ann., 1960, 77 (1961). 104 A. Zeeck and P. Christiansen, Liebigs Ann. Chem., 724, 172 (1969). 105 M. E. Bergy, J. H. Coats, L. J. Hanka, and L. R. E. Johnson, U.S. Pat. 3,300,382 (1967). 106 A. Zeeck and M. Mardin, Liebigs Ann. Chem., 1063 (1974). 107 A. Zeeck, H. Zähner, and M. Mardin, Liebigs Ann. Chem., 1100 (1974). 108 B. E. Cross and L. J. Zammitt, J. Chem. Soc. Perkin Trans. 1, 2975 (1973). 109 H. Kein and S. Naef-Roth, Phytopathol. Z., 53, 45 (1965). 110 R. G. Cooke and J. B. Robinson, Aust. J. Chem., 23, 1695 (1970). 111 K. Eckardt, D. Tresselt, and W. Ihn, J. Antibiot., 31, 970 (1978). 112 J. D. BúLock and J. R. Smith, J. Chem. Soc. C, 1941 (1968). 113 R. Kazlauskas, P. T. Murphy, R. G. Warren, R. J. Wells, and J. F. Blount, Aust. J. Chem., 31, 2685 (1978). 114 K. Inoue, S. Ueda, Y. Shiobara, and H. Inouye, Phytochemistry, 16, 1689 (1977). 115 D. L. Dreyer, I. Arai, C. D. Bachman, W. R. Anderson, Jr., R. G. Smith, and G. D. Daves, Jr., J. Am. Chem. Soc., 97, 4985 (1975). 116 N. N. Gerber and M. S. Ammar, J. Antibiot., 32, 685 (1979). 117 C.-K. Wat, A. Tse, R. J. Bandoni, and G. H. N. Towers, Phytochemistry, 7, 2177 (1968). 118 R. D. Allan and R. J. Wells, Tetrahedron Lett., 7 (1973). 119 K. Kawashima, K. Nakanishi, M. Tada, and H. Nishikawa, Tetrahedron Lett., 1227 (1964). 120 W. Watson, Z. Taira, X. A. Dominquez, H. Gonzales, M. Guiterrez, and R. Aragon, Tetrahedron Lett., 2501 (1976). 121 J. Gripenberg, Tetrahedron Lett., 619 (1974). 122 M. Moir and R. H. Thompson, J. Chem. Soc. Perkin Trans. 1, 1556 (1973). 123 T. Arai, K. Takahashi, A. Kubo, S. Nakahara, S. Sato, K. Aiba, and C. Tamura, Tetrahedron Lett., 2355 (1979). 124 M. Muroi, K. Haibara, M. Asai, T. Kishi, Tetrahedron Lett., 309 (1980). 125 H. S. Garg and C. R. Mitra, Tetrahedron Lett., 1549 (1968). 126 P. M. Scott and J. W. Lawrence, Can. J. Microbiol., 14(9), 1015 (1968). 127 J. R. Carruthers, S. Cerrini, W. Fedeli, C. G. Casinovi, C. Galeffi, A. M. T. Vaccaro, and A. Scala, J. Chem. Soc. Chem. Commun., 164 (1971). 128 M. Hensch, P. Rüedi, and C. H. Eugster, Helv. Chim. Acta, 58, 1921 (1975). 129 S. Kondo, T. Wakashiro, M. Hamada, K. Maeda, T. Takeuchi, and H. Umezawa, J. Antiobiot., 23, 354 (1970). Citing Literature Volume1, Issue3Autumn (Fall) 1981Pages 249-280 ReferencesRelatedInformation

Referência(s)