Artigo Revisado por pares

Room‐Temperature Hydrogen Sensing with Heteronanostructures Based on Reduced Graphene Oxide and Tin Oxide

2012; Wiley; Volume: 51; Issue: 44 Linguagem: Inglês

10.1002/anie.201204373

ISSN

1521-3773

Autores

Patrícia A. Russo, Nicola Donato, Salvatore Gianluca Leonardi, Seunghwan Baek, Donato E. Conte, G. Neri, Nicola Pinna,

Tópico(s)

Transition Metal Oxide Nanomaterials

Resumo

Angewandte Chemie International EditionVolume 51, Issue 44 p. 11053-11057 Communication Room-Temperature Hydrogen Sensing with Heteronanostructures Based on Reduced Graphene Oxide and Tin Oxide† Dr. Patrícia A. Russo, Dr. Patrícia A. Russo Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this authorDr. Nicola Donato, Dr. Nicola Donato Department of Matter Physics and Electronic Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorDr. Salvatore Gianluca Leonardi, Dr. Salvatore Gianluca Leonardi Department of Industrial Chemistry and Materials Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorSeunghwan Baek, Seunghwan Baek World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul, 151-744 (South Korea)Search for more papers by this authorDr. Donato E. Conte, Dr. Donato E. Conte Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this authorProf. Giovanni Neri, Prof. Giovanni Neri Department of Industrial Chemistry and Materials Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorProf. Nicola Pinna, Corresponding Author Prof. Nicola Pinna [email protected] Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal) World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul, 151-744 (South Korea) Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany)Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this author Dr. Patrícia A. Russo, Dr. Patrícia A. Russo Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this authorDr. Nicola Donato, Dr. Nicola Donato Department of Matter Physics and Electronic Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorDr. Salvatore Gianluca Leonardi, Dr. Salvatore Gianluca Leonardi Department of Industrial Chemistry and Materials Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorSeunghwan Baek, Seunghwan Baek World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul, 151-744 (South Korea)Search for more papers by this authorDr. Donato E. Conte, Dr. Donato E. Conte Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this authorProf. Giovanni Neri, Prof. Giovanni Neri Department of Industrial Chemistry and Materials Engineering, University of Messina, 98166 Messina (Italy)Search for more papers by this authorProf. Nicola Pinna, Corresponding Author Prof. Nicola Pinna [email protected] Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal) World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul, 151-744 (South Korea) Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany)Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)Search for more papers by this author First published: 28 September 2012 https://doi.org/10.1002/anie.201204373Citations: 251 † This research was supported financially by the WCU (World Class University) program through the National Research Foundation (NRF) of Korea, which is funded by the Ministry of Education, Science and Technology (R31-10013), and by Fundação para a Ciência e a Tecnologia (FCT) projects PTDC/CTM/098361/2008 and SFRH/BPD/79910/2011. Regina Rothe from the Max Planck Institute of Colloids and Interfaces is acknowledged for N2-adsorption measurements. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract There's something in the air …︁ A nanocomposite consisting of well-dispersed SnO2 and Pt nanoparticles on reduced graphene oxide (see the high-resolution TEM image) exhibited very high responses to hydrogen at concentrations between 0.5 and 3 % in air, with response times of 3–7 s and recovery times of 2–6 s. The sensor was prepared by a straightforward microwave-assisted non-aqueous sol–gel approach. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description anie_201204373_sm_miscellaneous_information.pdf292.9 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Balat, Int. J. Hydrogen Energy 2008, 33, 4013–4029. 2T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B 2011, 157, 329–352. 3H. Gu, Z. Wang, Y. Hu, Sensors 2012, 12, 5517–5550. 4H. Huang, H. Gong, C. L. Chow, J. Guo, T. J. White, M. S. Tse, O. K. Tan, Adv. Funct. Mater. 2011, 21, 2680–2686. 5S. Shao, X. Qiu, D. He, R. Koehn, N. Guan, X. Lu, N. Bao, C. A. Grimes, Nanoscale 2011, 3, 4283–4289. 6W. Göpel, K. D. Schierbaum, Sens. Actuators B 1995, 26, 1–12. 7Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, H. Gu, Int. J. Hydrogen Energy 2012, 37, 4526–4532. 8A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 2005, 5, 667–673. 9L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun, J. Lin, Appl. Phys. Lett. 2005, 87, 222106. 10E. Şennik, Z. Çolak, N. Kılınç, Z. Z. Öztürk, Int. J. Hydrogen Energy 2010, 35, 4420–4427. 11Y. Wang, X. Jiang, Y. Xia, J. Am. Chem. Soc. 2003, 125, 16176–16177. 12J. Gong, J. Sun, Q. Chen, Sens. Actuators B 2008, 130, 829–835. 13G. Lu, L. E. Ocola, J. Chen, Adv. Mater. 2009, 21, 2487–2491. 14S. Mao, S. Cui, K. Yu, Z. Wen, G. Lu, J. Chen, Nanoscale 2012, 4, 1275–1279. 15L. De Luca, A. Donato, S. Santangelo, G. Faggio, G. Messina, N. Donato, G. Neri, Int. J. Hydrogen Energy 2012, 37, 1842–1851. 16L. Renard, H. Elhamzaoui, B. Jousseaume, T. Toupance, G. Laurent, F. Ribot, H. Saadaoui, J. Brötz, H. Fuess, R. Riedeld, A. Gurlo, Chem. Commun. 2011, 47, 1464–1466. 17 17aJ. Villatoro, D. Monzón-Hernández, Opt. Express 2005, 13, 5087–5092; 17bD. J. Sirbuly, S. E. Létant, T. V. Ratto, Adv. Mater. 2008, 20, 4724–4727. 18 18aI. Eisele, T. Doll, M. Burgmair, Sens. Actuators B 2001, 78, 19–25; 18bK. Scharnagl, A. Karthigeyan, M. Burgmair, M. Zimmer, T. Doll, I. Eisele, Sens. Actuators B 2001, 80, 163–168. 19 19aK. Domanský, D. L. Baldwin, J. W. Grate, T. B. Hall, J. Li, M. Josowicz, J. Janata, Anal. Chem. 1998, 70, 473–481; 19bJ. Janata, M. Josowicz, Anal. Chem. 1998, 70, 179R–208R. 20A. Kaniyoor, R. I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanoscale 2009, 1, 382–386. 21M. Shafiei, P. G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R. B. Kaner, K. Kalantar-zadeh, W. Wlodarski, J. Phys. Chem. C 2010, 114, 13796–13801. 22J. L. Johnson, A. Behnam, S. J. Pearton, A. Ural, Adv. Mater. 2010, 22, 4877–4880. 23H. Vedala, D. C. Sorescu, G. P. Kotchey, A. Star, Nano Lett. 2011, 11, 2342–2347. 24A. Kaniyoor, S. Ramaprabhu, Carbon 2011, 49, 227–236. 25L.-S. Zhang, W. D. Wang, X.-Q. Liang, W.-S. Chu, W.-G. Song, W. Wang, Z.-Y. Wu, Nanoscale 2011, 3, 2458–2460. 26R. Kumar, D. Varandani, B. R. Mehta, V. N. Singh, Z. Wen, X. Feng, K. Müllen, Nanotechnology 2011, 22, 275719. 27U. Lange, T. Hirsch, V. M. Mirsky, O. S. Wolfbeis, Electrochim. Acta 2011, 56, 3707–3712. 28W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S.-S. Pei, Sens. Actuators B 2010, 150, 296–300. 29K. R. Ratinac, W. Yang, S. P. Ringer, F. Braet, Environ. Sci. Technol. 2010, 44, 1167–1176. 30R. S. Sundaram, C. Gómez-Navarro, K. Balasubramanian, M. Burghard, K. Kern, Adv. Mater. 2008, 20, 3050–3053. 31F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, Science 2001, 293, 2227–2231. 32W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339–1339. 33S. Baek, S.-H. Yu, S.-K. Park, A. Pucci, C. Marichy, D.-C. Lee, Y.-E. Sung, Y. Piao, N. Pinna, RSC Adv. 2011, 1, 1687–1690. 34 34aJ. H. Ba, J. Polleux, M. Antonietti, M. Niederberger, Adv. Mater. 2005, 17, 2509–2512; 34bP. Makowski, R. Rothe, A. Thomas, M. Niederberger, F. Goettmann, Green Chem. 2009, 11, 34–37. 35M. Niederberger, G. Garnweitner, Chem. Eur. J. 2006, 12, 7282–7302. 36P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 2010, 55, 3909–3914. 37D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoff, C. W. Bielawski, J. Mater. Chem. 2011, 21, 3443–3447. 38J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, Nano Lett. 2008, 8, 3137–3140. 39A. Cabot, A. Diéguez, A. Romano-Rodríguez, J. R. Morante, N. Bârsan, Sens. Actuators B 2001, 79, 98–106. 40B. H. Chu, J. Nicolosi, C. F. Lo, W. Strupinski, S. J. Pearton, F. Ren, Electrochem. Solid-State Lett. 2011, 14, K 43–K45. 41L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, S. J. Ippolito, W. Wlodarski, J. Phys. Chem. C 2010, 114, 16168–16173. 42M. Yang, D.-H. Kim, W.-S. Kim, T. J. Kang, B. Y. Lee, S. Hong, Y. H. Kim, S.-H. Hong, Nanotechnology 2010, 21, 215501. 43H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, J. Lin, Appl. Phys. Lett. 2005, 86, 243503. 44F. Rumiche, H. H. Wang, J. E. Indacochea, Sens. Actuators B 2012, 163, 97–106. Citing Literature Volume51, Issue44October 29, 2012Pages 11053-11057 ReferencesRelatedInformation

Referência(s)