Artigo Revisado por pares

Gaseous Elemental Mercury in the Marine Boundary Layer: Evidence for Rapid Removal in Anthropogenic Pollution

2003; American Chemical Society; Volume: 37; Issue: 17 Linguagem: Inglês

10.1021/es0341081

ISSN

1520-5851

Autores

P. S. Weiss‐Penzias, Daniel A. Jaffe, A. McClintick, Eric M. Prestbo, Matthew S. Landis,

Tópico(s)

Air Quality and Health Impacts

Resumo

In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer during 2001−2002. Air of continental origin containing anthropogenic pollutants from the urban areas to the east contained on average 5.3% lower Hg0 levels as compared to the marine background. This result is difficult to reconcile since it is known that industrial emissions in our region are sources of Hg0. The rate of removal of Hg0 from a pollution plume necessary to account for our observations is inconsistent with the accepted view of Hg0 as a stable atmospheric pollutant. The largest and most frequent Hg0 loss events occurred in the presence of increased ozone (O3) during the summer. Hg0 and O3 also display diurnal cycles that are out-of-phase with one another. In other seasons Hg0 behavior is less consistent, as we observe weak positive correlations with O3 and occasional Hg0 enhancements in local pollution. RGM and PHg concentrations are enhanced only slightly during Hg0 loss events, comprising a small fraction of the mercury pool (∼3%). Long-range transported pollution of Asian origin was also detected at CPO, and this contains both higher and lower levels of Hg0 as compared to the background with maximum changes being <20%. Here, the more photochemically processed the air mass, as determined by propane/ethane ratios, the more likely we are to observe Hg0 loss. Air from the marine background in summer displays a significant diurnal cycle with a phase that matches the diurnal cycles seen in polluted air masses. A Junge lifetime for Hg0 in the clean marine boundary layer is calculated to be 7.1 months, which is on the low end of previous estimates (0.5−2 yr).

Referência(s)