Remnants of suicidal cells fostering systemic autoaggression: Apoptosis in the origin and maintenance of autoimmunity
2000; Wiley; Volume: 43; Issue: 8 Linguagem: Inglês
10.1002/1529-0131(200008)43
ISSN1529-0131
AutoresPatrizia Rovere, Maria Grazia Sabbadini, Fausto Fazzini, Attilio Bondanza, Valérie S. Zimmermann, C Rugarli, Angelo A. Manfredi,
Tópico(s)T-cell and B-cell Immunology
ResumoArthritis & RheumatismVolume 43, Issue 8 p. 1663-1672 Special ArticleFree to Read Remnants of suicidal cells fostering systemic autoaggression: Apoptosis in the origin and maintenance of autoimmunity Patrizia Rovere, Patrizia Rovere Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorMaria Grazia Sabbadini, Maria Grazia Sabbadini Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorFausto Fazzini, Fausto Fazzini Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorAttilio Bondanza, Attilio Bondanza Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorValérie S. Zimmermann, Valérie S. Zimmermann Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorClaudio Rugarli, Claudio Rugarli Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorAngelo A. Manfredi, Corresponding Author Angelo A. Manfredi Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalyH. S. Raffaele, via Olgettina 60, 20132 Milan, ItalySearch for more papers by this author Patrizia Rovere, Patrizia Rovere Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorMaria Grazia Sabbadini, Maria Grazia Sabbadini Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorFausto Fazzini, Fausto Fazzini Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorAttilio Bondanza, Attilio Bondanza Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorValérie S. Zimmermann, Valérie S. Zimmermann Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorClaudio Rugarli, Claudio Rugarli Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalySearch for more papers by this authorAngelo A. Manfredi, Corresponding Author Angelo A. Manfredi Istituto Scientifico H. S. Raffaele, and Università Vita-Salute San Raffaele, Milan, ItalyH. S. Raffaele, via Olgettina 60, 20132 Milan, ItalySearch for more papers by this author First published: 26 March 2001 https://doi.org/10.1002/1529-0131(200008)43:8 3.0.CO;2-1Citations: 63AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Vaishnaw AK, McNally JD, Elkon KB. Apoptosis in the rheumatic diseases. Arthritis Rheum 1997; 40: 1917–27. 10.1002/art.1780401102 CASPubMedWeb of Science®Google Scholar 2 Utz PJ, Anderson P. Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum 1998; 41: 1152–60. 10.1002/1529-0131(199807)41:7 3.0.CO;2-L CASPubMedWeb of Science®Google Scholar 3 Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ 1999; 6: 6–12. 10.1038/sj.cdd.4400460 CASPubMedWeb of Science®Google Scholar 4 Amoura Z, Piette J-C, Bach J-F, Koutouzov S. The key role of nucleosomes in lupus. Arthritis Rheum 1999; 42: 833–43. 10.1002/1529-0131(199905)42:5 3.0.CO;2-T CASPubMedWeb of Science®Google Scholar 5 Berden JH, Licht R, van Bruggen MC, Tax WJ. Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr Opin Nephrol Hypertens 1999; 8: 299–306. 10.1097/00041552-199905000-00005 CASPubMedWeb of Science®Google Scholar 6 Levine JS, Koh JS. The role of apoptosis in autoimmunity: immunogen, antigen, and accelerant. Semin Nephrol 1999; 19: 34–47. CASPubMedWeb of Science®Google Scholar 7 Ravirajan CT, Pittoni V, Isenberg DA. Apoptosis in human autoimmune diseases. Int Rev Immunol 1999; 18: 563–89. 10.3109/08830189909088499 CASPubMedGoogle Scholar 8 Theofilopoulos AN, Kono DH. The genes of systemic autoimmunity. Proc Assoc Am Physicians 1999; 111: 228–40. 10.1046/j.1525-1381.1999.99244.x CASPubMedWeb of Science®Google Scholar 9 Casiano CA, Tan EM. Recent developments in the understanding of antinuclear antibodies. Int Arch Allergy Immunol 1996; 114: 308–13. 10.1159/000237385 Web of Science®Google Scholar 10 Thomas R, Lipsky PE. Presentation of self peptides by dendritic cells: possible implications for the pathogenesis of rheumatoid arthritis. Arthritis Rheum 1996; 39: 183–90. 10.1002/art.1780390202 CASPubMedWeb of Science®Google Scholar 11 Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant D, de Saint-Vis B, Jacquet C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF-α. J Exp Med 1996; 184: 695–706. 10.1084/jem.184.2.695 CASPubMedWeb of Science®Google Scholar 12 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52. 10.1038/32588 CASPubMedWeb of Science®Google Scholar 13 Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, et al. Maturation stages of mouse dendritic cells in growth-factor-dependent long-term cultures. J Exp Med 1997; 185: 317–28. 10.1084/jem.185.2.317 CASPubMedWeb of Science®Google Scholar 14 Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997; 9: 10–6. 10.1016/S0952-7915(97)80153-7 CASPubMedWeb of Science®Google Scholar 15 Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811. 10.1146/annurev.immunol.18.1.767 CASPubMedWeb of Science®Google Scholar 16 Heath WR, Kurts C, Miller JFAP, Carbone FR. Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J Exp Med 1998; 187: 1549–53. 10.1084/jem.187.10.1549 CASPubMedWeb of Science®Google Scholar 17 Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280: 243–8. 10.1126/science.280.5361.243 CASPubMedWeb of Science®Google Scholar 18 Adler AJ, Marsh DW, Yochum GS, Guzzo JL, Nigam A, Nelson WG, et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med 1998; 187: 1555–64. 10.1084/jem.187.10.1555 CASPubMedWeb of Science®Google Scholar 19 Adler AJ, Huang CT, Yochum GS, Marsh DW, Pardoll DM. In vivo CD4+ T cell tolerance induction versus priming is independent of the rate and number of cell divisions. J Immunol 2000; 164: 649–55. 10.4049/jimmunol.164.2.649 CASPubMedWeb of Science®Google Scholar 20 Lane PJ, Brocker T. Developmental regulation of dendritic cell function. Curr Opin Immunol 1999; 11: 308–13. 10.1016/S0952-7915(99)80049-1 CASPubMedWeb of Science®Google Scholar 21 Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–68. 10.1084/jem.188.12.2357 CASPubMedWeb of Science®Google Scholar 22 Mohan C, Adams S, Stanik V, Datta SK. Nucleosomes: a major immunogen for pathogenic autoantibody inducing T cells of lupus. J Exp Med 1993; 177: 1367–81. 10.1084/jem.177.5.1367 CASPubMedWeb of Science®Google Scholar 23 Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 1999; 11: 699–708. 10.1016/S1074-7613(00)80144-2 CASPubMedWeb of Science®Google Scholar 24 Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest 1999; 104: 173–80. 10.1172/JCI6909 CASPubMedWeb of Science®Google Scholar 25 Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 1998; 188: 1493–501. 10.1084/jem.188.8.1493 CASPubMedWeb of Science®Google Scholar 26 Ludewig B, Ochsenbein AE, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with nominal host cells results in severe autoimmune disease. J Exp Med 2000; 191: 795–803. 10.1084/jem.191.5.795 CASPubMedWeb of Science®Google Scholar 27 Isenberg DA, Ehrenstein MR, Longhurst C, Kalsi JK. The origin, sequence, structure, and consequences of developing anti-DNA antibodies: a human perspective. Arthritis Rheum 1994; 37: 169–80. 10.1002/art.1780370204 CASPubMedWeb of Science®Google Scholar 28 Maddison PJ, Reichlin M. Quantitation of precipitating antibodies to certain soluble nuclear antigens in SLE. Arthritis Rheum 1977; 20: 819–24. 10.1002/art.1780200310 CASPubMedWeb of Science®Google Scholar 29 Scofield RH, Zhang F, Kurien BT, Anderson CJ, Reichlin M, Harley JB, et al. Development of the anti-Ro autoantibody response in a patient with systemic lupus erythematosus. Arthritis Rheum 1996; 39: 1664–8. 10.1002/art.1780391008 PubMedWeb of Science®Google Scholar 30 Fatenejad S, Bennett M, Moslehi J, Craft J. Influence of antigen organization on the development of lupus autoantibodies. Arthritis Rheum 1998; 41: 603–12. 10.1002/1529-0131(199804)41:4 3.0.CO;2-E CASPubMedWeb of Science®Google Scholar 31 Ferguson TA, Griffith TS. A vision of cell death: insights into immune privilege. Immunol Rev 1997; 156: 167–84. 10.1111/j.1600-065X.1997.tb00967.x PubMedWeb of Science®Google Scholar 32 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 1994; 179: 1317–30. 10.1084/jem.179.4.1317 CASPubMedWeb of Science®Google Scholar 33 Amoura Z, Koutouzov S, Chabre H, Cacoub P, Amoura I, Musset L, et al. Presence of antinucleosome autoantibodies in a restricted set of connective tissue diseases: antinucleosome antibodies of the IgG3 subclass are markers of renal pathogenicity in systemic lupus erythematosus. Arthritis Rheum 2000; 43: 76–84. 10.1002/1529-0131(200001)43:1 3.0.CO;2-I CASPubMedWeb of Science®Google Scholar 34 Amoura Z, Chabre H, Koutouzov S, Lotton C, Cabrespines A, Bach J-F, et al. Nucleosome-restricted antibodies are detected before anti-dsDNA and or antihistone antibodies in serum of MRL-Mp lpr/lpr mice and +/+ mice, and are present in kidney eluates of lupus mice with proteinuria. Arthritis Rheum 1994; 37: 1684–8. 10.1002/art.1780371118 CASPubMedWeb of Science®Google Scholar 35 Rutjes SA, van der Heijden A, Utz PJ, van Venrooij WJ, Pruijn GJ. Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J Biol Chem 1999; 274: 24799–807. 10.1074/jbc.274.35.24799 CASPubMedWeb of Science®Google Scholar 36 Degen WGJ, van Aarssen Y, Pruijn GJM, Utz PJ, van Venrooij WJ. The fate of U1 snRNP during anti-Fas induced apoptosis: specific cleavage of the U1 snRNA molecule. Cell Death Differ 2000; 7: 70–9. 10.1038/sj.cdd.4400617 CASPubMedWeb of Science®Google Scholar 37 Rutjes SA, Utz PJ, van der Heijden A, Broekhuis C, van Venrooij WJ, Pruijn GJ. The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis. Cell Death Differ 1999; 6: 976–86. 10.1038/sj.cdd.4400571 CASPubMedWeb of Science®Google Scholar 38 Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 1999; 190: 815–26. 10.1084/jem.190.6.815 CASPubMedWeb of Science®Google Scholar 39 Lanzavecchia A. How can cryptic epitopes trigger autoimmunity? J Exp Med 1995; 181: 1945–8. 10.1084/jem.181.6.1945 CASPubMedWeb of Science®Google Scholar 40 Albert ML, Sauter B, Bhardway N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–9. 10.1038/32183 CASPubMedWeb of Science®Google Scholar 41 Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P, et al. Bystander apoptosis triggers dendritic cell maturation and antigen presenting function. J Immunol 1998; 161: 4467–71. CASPubMedWeb of Science®Google Scholar 42 Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188: 1359–68. 10.1084/jem.188.7.1359 CASPubMedWeb of Science®Google Scholar 43 Inaba K, Turley S, Yamaide F, Iyoda T, Mahnke K, Inaba M, et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 1998; 188: 2163–73. 10.1084/jem.188.11.2163 CASPubMedWeb of Science®Google Scholar 44 Rovere P, Sabbadini MG, Vallinoto C, Fascio U, Zimmermann VS, Bondanza A, et al. Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J Leukoc Biol 1999; 66: 345–9. 10.1002/jlb.66.2.345 CASPubMedWeb of Science®Google Scholar 45 Ronchetti A, Rovere P, Iezzi G, Galati G, Heltai S, Protti MP, et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. J Immunol 1999; 163: 130–6. CASPubMedWeb of Science®Google Scholar 46 Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191: 423–34. 10.1084/jem.191.3.423 CASPubMedWeb of Science®Google Scholar 47 Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci U S A 2000; 97: 2185–90. 10.1073/pnas.040540197 CASPubMedWeb of Science®Google Scholar 48 Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191: 411–6. 10.1084/jem.191.3.411 CASPubMedWeb of Science®Google Scholar 49 Ren Y, Savill J. Apoptosis: the importance of being eaten. Cell Death Differ 1998; 5: 563–8. 10.1038/sj.cdd.4400407 CASPubMedWeb of Science®Google Scholar 50 Stern M, Savill J, Haslett C. Human monocyte derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Am J Pathol 1996; 149: 911–6. CASPubMedWeb of Science®Google Scholar 51 Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. Dendritic cell loss from non lymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor and interleukin 1. J Exp Med 1995; 181: 2237–47. 10.1084/jem.181.6.2237 CASPubMedWeb of Science®Google Scholar 52 Ogasawara J, Watanabe-Fukunaga R, Adaki M, Matsuzawa A, Kasugai T, Kitamura Y, et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–9. 10.1038/364806a0 CASPubMedWeb of Science®Google Scholar 53 Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. Parenchymal cell apoptosis has a signal for sinusoidal sequestration and trans-endothelial migration of neutrophils in murine models of endotoxin and Fas-antibody induced liver injury. Hepatology 1998; 28: 761–7. 10.1002/hep.510280324 CASPubMedWeb of Science®Google Scholar 54 Gregory CD. CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol 2000; 12: 27–34. 10.1016/S0952-7915(99)00047-3 CASPubMedWeb of Science®Google Scholar 55 Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998; 5: 551–62. 10.1038/sj.cdd.4400404 CASPubMedWeb of Science®Google Scholar 56 Platt N, da Silva RP, Gordon S. Recognising death: the phagocytosis of apoptotic cells. Trends Cell Biol 1998; 8: 365–72. 10.1016/S0962-8924(98)01329-4 CASPubMedWeb of Science®Google Scholar 57 Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, et al. Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 1997; 159: 5391–9. 10.4049/jimmunol.159.11.5391 CASPubMedWeb of Science®Google Scholar 58 Yrlid U, Wick MJ. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 2000; 191: 613–23. 10.1084/jem.191.4.613 CASPubMedWeb of Science®Google Scholar 59 Ferri C, Zignego AL. Relation between infection and autoimmunity in mixed cryoglobulinemia. Curr Opin Rheumatol 2000; 12: 53–60. 10.1097/00002281-200001000-00009 CASPubMedWeb of Science®Google Scholar 60 Horwitz MS, Sarvetnick N. Viruses, host responses, and autoimmunity. Immunol Rev 1999; 169: 241–53. 10.1111/j.1600-065X.1999.tb01319.x CASPubMedWeb of Science®Google Scholar 61 Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5: 1249–55. 10.1038/15200 CASPubMedWeb of Science®Google Scholar 62 Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000; 191: 435–44. 10.1084/jem.191.3.435 CASPubMedWeb of Science®Google Scholar 63 Fadok VA, Bratton DL, Konowal A, Freed PW, Wetcott JY, Henson P. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2 and PAF. J Clin Invest 1998; 101: 890–8. 10.1172/JCI1112 CASPubMedWeb of Science®Google Scholar 64 McDonald PP, Fadok VA, Bratton D, Henson PM. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 1999; 163: 6164–72. 10.4049/jimmunol.163.11.6164 CASPubMedWeb of Science®Google Scholar 65 Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature 1998; 390: 350–7. 10.1038/37022 CASPubMedWeb of Science®Google Scholar 66 Brown SB, Savill J. Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 1999; 162: 480–5. 10.4049/jimmunol.162.1.480 CASPubMedWeb of Science®Google Scholar 67 Nelson EL, Strobl S, Subleski J, Prieto D, Kopp WC, Nelson PJ. Cycling of human dendritic cell effector phenotypes in response to TNF-α: modification of the current 'maturation' paradigm and implications for in vivo immunoregulation. FASEB J 1999; 13: 2021–30. 10.1096/fasebj.13.14.2021 CASPubMedWeb of Science®Google Scholar 68 Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 1998; 28: 359–69. 10.1002/(SICI)1521-4141(199801)28:01 3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar 69 Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 1997; 158: 4525–8. 10.4049/jimmunol.158.10.4525 CASPubMedWeb of Science®Google Scholar 70 Botto M, Dell'Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19: 56–9. 10.1038/ng0598-56 CASPubMedWeb of Science®Google Scholar 71 Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology 1998; 199: 265–85. 10.1016/S0171-2985(98)80032-6 CASPubMedWeb of Science®Google Scholar 72 Salmon M, Gordon C. The role of apoptosis in systemic lupus erythematosus. Rheumatology 1999; 38: 1177–83. 10.1093/rheumatology/38.12.1177 CASPubMedWeb of Science®Google Scholar 73 Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 1994; 15: 81–8. 10.1016/0167-5699(94)90138-4 CASPubMedWeb of Science®Google Scholar 74 Gewurz H, Zhang XH, Lint TF. Structure and function of the pentraxins. Curr Opin Immunol 1995; 7: 54–64. 10.1016/0952-7915(95)80029-8 CASPubMedWeb of Science®Google Scholar 75 Kolb-Bachofen V. A review on the biological properties of C-reactive protein. Immunobiology 1991; 181: 133–45. 10.1016/S0171-2985(11)80193-2 Google Scholar 76 Bickerstaff MCM, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A, et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 1999; 5: 694–7. 10.1038/9544 CASPubMedWeb of Science®Google Scholar 77 Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 1998; 188: 387–92. 10.1084/jem.188.2.387 CASPubMedWeb of Science®Google Scholar 78 Levine JS, Subang R, Koh JS, Rauch J. Induction of anti-phospholipid autoantibodies by β2-glycoprotein I bound to apoptotic thymocytes. J Autoimmun 1998; 11: 413–24. 10.1006/jaut.1998.0235 CASPubMedWeb of Science®Google Scholar 79 Kurts C, Miller JFAP, Subramaniam RM, Carbone FR, Heath WR. MHC class I restricted cross presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 1998; 188: 409–14. 10.1084/jem.188.2.409 CASPubMedWeb of Science®Google Scholar 80 Laderach D, Bach JF, Koutouzov S. Nucleosomes inhibit phagocytosis of apoptotic thymocytes by peritoneal macrophages from MRL+/+ lupus-prone mice. J Leukoc Biol 1998; 64: 774–80. 10.1002/jlb.64.6.774 CASPubMedWeb of Science®Google Scholar 81 Herrmann M, Zoller OM, Hagenhofer M, Voll R, Kalden JR. What triggers anti-dsDNA antibodies? Mol Biol Rep 1996; 23: 265–7. 10.1007/BF00351179 CASPubMedWeb of Science®Google Scholar 82 Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 1241–50. 10.1002/1529-0131(199807)41:7 3.0.CO;2-H CASPubMedWeb of Science®Google Scholar 83 Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M. High levels of circulating early apoptotic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 1998; 7: 113–8. 10.1191/096120398678919804 CASPubMedWeb of Science®Google Scholar 84 Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL. Increased apoptotic peripheral neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA and neutropenia. Ann Rheum Dis 1999; 58: 309–14. 10.1136/ard.58.5.309 CASPubMedWeb of Science®Google Scholar 85 Cohen AH, Zamboni L. Ultrastructural appearance and morphogenesis of renal glomerular hematoxylin bodies. Am J Pathol 1977; 89: 105–18. CASPubMedWeb of Science®Google Scholar 86 Emlen W, Niebur J, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 1994; 152: 3685–92. 10.4049/jimmunol.152.7.3685 CASPubMedWeb of Science®Google Scholar 87 Rumore PM, Steinman CR. Endogenous circulating DNA in systemic lupus erythematosus: occurrence as multimeric complexes bound to histone. J Clin Invest 1990; 86: 69–74. 10.1172/JCI114716 CASPubMedWeb of Science®Google Scholar 88 Price BE, Rauch J, Shia MA, Walsh MT, Lieberthal W, Gilligan HM, et al. Anti-phospholipid antibodies bind to apoptotic, but not viable, thymocytes in a β2-glycoprotein I-dependent manner. J Immunol 1996; 157: 2201–8. CASPubMedWeb of Science®Google Scholar 89 Casciola-Rosen L, Rosen A, Petri M, Schlissel M. Surface blebs on apoptotic cells are sites of enhanced pro-coagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A 1996; 93: 1624–9. 10.1073/pnas.93.4.1624 CASPubMedWeb of Science®Google Scholar 90 Pittoni V, Ravirajan CT, Donohoe S, MacHin SJ, Lydyard PM, Isenberg DA. Human monoclonal anti-phospholipid antibodies selectively bind to membrane phospholipid and β2-glycoprotein I (β2-GPI) on apoptotic cells. Clin Exp Immunol 2000; 119: 533–43. 10.1046/j.1365-2249.2000.01161.x CASPubMedWeb of Science®Google Scholar 91 Roubey RAS. Immunology of the antiphospholipid antibody syndrome. Arthritis Rheum 1996; 39: 1444–54. 10.1002/art.1780390903 PubMedWeb of Science®Google Scholar 92 Pittoni V, Isenberg D. Apoptosis and antiphospholipid antibodies. Semin Arthritis Rheum 1998; 28: 163–78. 10.1016/S0049-0172(98)80033-4 CASPubMedWeb of Science®Google Scholar 93 Moore JE, Lutz WB. The natural history of systemic lupus erythematosus: an approach to its study through chronic biological false positive reactors. J Chronic Dis 1955; 1: 297–316. 10.1016/0021-9681(55)90039-4 CASPubMedGoogle Scholar 94 Manfredi AA, Rovere P, Galati G, Heltai S, Bozzolo E, Soldini L, et al. Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arthritis Rheum 1998; 41: 205–14. 10.1002/1529-0131(199802)41:2 3.0.CO;2-0 CASPubMedWeb of Science®Google Scholar 95 Manfredi AA, Rovere P, Heltai S, Galati G, Nebbia G, Tincani A, et al. Apoptotic cell clearance in systemic lupus erythematosus. II. Role of β2-glycoprotein I. Arthritis Rheum 1998; 41: 215–23. 10.1002/1529-0131(199802)41:2 3.0.CO;2-X CASPubMedWeb of Science®Google Scholar 96 Miranda ME, Tseng CE, Rashbaum W, Ochs RL, Casiano CA, Di Donato F, et al. Accessibility of SSA/Ro and SSB/La antigens to maternal autoantibodies in apoptotic human fetal cardiac myocytes. J Immunol 1998; 161: 5061–9. 10.4049/jimmunol.161.9.5061 CASPubMedWeb of Science®Google Scholar 97 Rovere P, Manfredi AA, Vallinoto C, Zimmermann VS, Fascio U, Balestrieri G, et al. Dendritic cells preferentially internalise apoptotic cells opsonized by anti-β2-glycoprotein I antibodies. J Autoimmun 1998; 11: 403–11. 10.1006/jaut.1998.0224 CASPubMedWeb of Science®Google Scholar 98 Rovere P, Sabbadini MG, Vallinoto C, Fascio U, Rescigno M, Crosti M, et al. Dendritic cell presentation of antigens from apoptotic cells in a proinflammatory context: role of opsonizing anti–β2-glycoprotein I antibodies. Arthritis Rheum 1999; 42: 1412–20. 10.1002/1529-0131(199907)42:7 3.0.CO;2-T CASPubMedWeb of Science®Google Scholar Citing Literature Volume43, Issue8August 2000Pages 1663-1672 ReferencesRelatedInformation
Referência(s)