Longitudinal Motion Based Lightweight Vehicle Payload Parameter Real-Time Estimations
2012; ASM International; Volume: 135; Issue: 1 Linguagem: Inglês
10.1115/1.4007554
ISSN1528-9028
Autores Tópico(s)Soil Mechanics and Vehicle Dynamics
ResumoThis paper proposes a longitudinal motion based payload parameter estimator (PPE) design for four-wheel-independently driven lightweight vehicles (LWVs), whose dynamics and control are substantially affected by their payload variations due to the LWVs' significantly reduced sizes and weights. Accurate and real-time estimation of payload parameters, including payload mass and its onboard planar location, will be helpful for LWV control (particularly under challenging driving conditions) and load monitoring. The proposed estimation method consists of three steps in sequential: tire effective radius identification for undriven wheels at constant speed driving; payload mass estimation during acceleration–deceleration period; and payload planar location estimation (PPLE). The PPLE is divided into two parts: a tire nominal normal force estimator (NNFE) based on a recursive least squares algorithm using signals generated by the redundant inputs, and a parameter calculator combining these estimated nominal normal forces. The prototype LWV is a lightweight electric ground vehicle (EGV) with separable torque control of the four wheels enabled by four in-wheel motors, which allow redundant input injections in the designed maneuvers. Experimental results obtained on an EGV road test show that the proposed PPE is capable of accurately estimating payload parameters, and it is independent of other unknown parameters such as tire-road friction coefficient.
Referência(s)