Artigo Revisado por pares

Hypersurfaces in Minkowski space with vanishing mean curvature

2002; Wiley; Volume: 55; Issue: 10 Linguagem: Inglês

10.1002/cpa.10044

ISSN

1097-0312

Autores

Simon Brendle,

Tópico(s)

Stability and Controllability of Differential Equations

Resumo

Communications on Pure and Applied MathematicsVolume 55, Issue 10 p. 1249-1279 Hypersurfaces in Minkowski space with vanishing mean curvature Simon Brendle, Simon Brendle [email protected] Universität Tübingen, Mathematishes Institut, Auf der Morgenstelle 10, 72076 Tübingen, GermanySearch for more papers by this author Simon Brendle, Simon Brendle [email protected] Universität Tübingen, Mathematishes Institut, Auf der Morgenstelle 10, 72076 Tübingen, GermanySearch for more papers by this author First published: 17 July 2002 https://doi.org/10.1002/cpa.10044Citations: 32AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Bibliography 1 Christodoulou, D.; Klainerman, S. Asymptotic properties of linear field equations in Minkowski space. Comm Pure Appl Math 43 (1990), no. 2, 137– 199. 2 Christodoulou, D.; Klainerman, S. The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41. Princeton University, Princeton, N.J., 1993. 3 Duff, M. J. A layman's guide to M-theory. Trends in mathematical physics (Knoxville, TN, 1998), 203– 224. AMS/IP Studies in Advanced Mathematics, 13. American Mathematical Society, Providence, R.I., 1999. 4 Hoppe, J. Some classical solutions of relativistic membrane equations in 4-space-time dimensions. Phys Lett B 329 (1994), no. 1, 10– 14. 5 Hörmander, L. Lectures on nonlinear hyperbolic differential equations. Springer, Berlin, 1997. 6 Huisken, G.; Struwe, M. Vibrating membranes. Preprint, 1999. 7 Klainerman, S. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm Pure Appl Math 38 (1985), no. 3, 321– 332. 8 Klainerman, S. The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), 293– 326. Lectures in Applied Mathematics, 23. American Mathematics Society, Providence, R.I., 1986. 9 Klainerman, S.; Nicolò, F. On local and global aspects of the Cauchy problem in general relativity. Classical Quantum Gravity 16 (1999), no. 8, R73– R157. 10 Klainerman, S.; Rodnianski, I. Improved local well posedness for quasilinear wave equations in dimension three. Preprint, 2001. 11 Lindblad, H. A note on global existence for small initial data of the minimal surface equation in Minkowski space time. Preprint, 2000. 12 Shatah, J.; Struwe, M. Geometric wave equations. Courant Lecture Notes in Mathematics, 2. New York University, Courant Institute of Mathematical Sciences, New York, 1998. 13 Sogge, C. D. Lectures on nonlinear wave equations. International Press, Boston, 1995. Citing Literature Volume55, Issue10October 2002Pages 1249-1279 ReferencesRelatedInformation

Referência(s)