Artigo Revisado por pares

Compound‐specific stable‐isotope (δ 13 C) analysis in soil science

2005; Wiley; Volume: 168; Issue: 5 Linguagem: Alemão

10.1002/jpln.200521794

ISSN

1522-2624

Autores

Bruno Glaser,

Tópico(s)

Radioactive contamination and transfer

Resumo

Journal of Plant Nutrition and Soil ScienceVolume 168, Issue 5 p. 633-648 Research Article Compound-specific stable-isotope (δ13C) analysis in soil science Bruno Glaser, Bruno Glaser [email protected] Institute of Soil Science and Soil Geography, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, GermanySearch for more papers by this author Bruno Glaser, Bruno Glaser [email protected] Institute of Soil Science and Soil Geography, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, GermanySearch for more papers by this author First published: 30 September 2005 https://doi.org/10.1002/jpln.200521794Citations: 120AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten This review provides current state of the art of compound-specific stable-isotope-ratio mass spectrometry (δ13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound-specific stable-isotope analysis are compared. Analogous to the δ13C analysis in bulk samples, by means of elemental analyzer–isotope-ratio mass spectrometry, physical fractions such as particle-size fractions, soil microbial biomass, and water-soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so-called molecular markers) indicating plant- (pentoses, long-chain n-alkanes, lignin phenols) and microbial-derived residues (phospholipid fatty acids, hexoses, amino sugars, and short-chain n-alkanes) as well as other interesting soil constituents such as “black carbon” and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis–gas chromatography–combustion–isotope-ratio mass spectrometry, gas chromatography–combustion–isotope-ratio mass spectrometry, or liquid chromatography–combustion–isotope-ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars ≈ sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3-to-C4 plant conversion) or artificial (positive or negative) 13C labeling is used. Abstractde Substanzspezifische Stabilisotopenanalyse (δ13C) in der Bodenforschung Dieser Artikel fasst den Stand der Forschung bezüglich der substanzspezifischen Stabilisotopenanalyse (δ13C) zusammen. Innovative Anwendungen und ein Ausblick für künftige Forschungsaktivitäten werden anhand von Fallbeispielen gegeben. Zunächst wird die ökologische Bedeutung von stabilen C-Isotopen kurz erläutert. Daran schließt sich ein methodischer Teil an, in welchem die verschiedenen Techniken gegenüber gestellt werden. Analog zu δ13C-Messungen der Feinerde mittels Elementaranalysator-Isotopenverhältnis-Massenspektrometrie können physikalisch isolierte Fraktionen (z. B. Korngrößenfraktionen, mikrobielle Biomasse, DOC) analysiert werden. Der Schwerpunkt dieses Übersichtsartikels liegt jedoch in der Diskussion der C-Isotopensignatur chemischer Fraktionen (sog. Biomarker), welche Rückschlüsse auf Herkunft und Dynamik pflanzlicher (Pentosen, langkettige n-Alkane, Ligninphenole) und mikrobieller Rückstände (Phospholipidfettsäuren, Hexosen, Aminozucker und kurzkettige n-Alkane) sowie anderer interessanter Substanzen im Boden erlaubt wie z. B. „Black Carbon”︁ und polyzyklische aromatische Kohlenwasserstoffe. Zu diesem Zweck kommen innovative Techniken zum Einsatz wie z. B. Pyrolyse-Gaschromatographie-Isotopenverhältnismassenspektrometrie, Gaschromatographie-Verbrennungs-Isotopenverhältnismassenspektrometrie und Flüssigkeitschromatographie-Oxidations-Isotopenverhältnismassenspektrometrie. Innovative ökologische Anwendungen werden erläutert, welche sich prinzipiell in zwei Kategorien einteilen lassen: (1) Quantifizierung der Sequestrierung und des Umsatzes dieser Verbindungen in der Umwelt; (2) Untersuchung der Herkunft spezifischer organischer Substanzen. Umsatzzeiten physikalischer (Sand < Schluff < Ton) und chemischer Fraktionen (Lignin < Phospholipidfettsäuren < Aminozucker ≈ Zucker) sind generall kleiner als jene der gesamten organischen Substanz in der Feinerde und nehmen in der in Klammern angegebenen Reihenfolge zu. Die Untersuchung der Herkunft organischer Substanzen (z. B. polyzyklischer aromatischer Kohlenwasserstoffe) ist problematisch, weil die Unterschiede der Isotopensignatur verschiedener Quellen gering sind und meist mehr als zwei Quellen zur Isotopensignatur des untersuchten Biomarkers beitragen. Deswegen sollte die Untersuchung der Herkunft organischer Substanzen auf Tracer-Experimente beschränkt werden, wie z. B. nach natürlicher (C3-C4-Pflanzenwechsel) bzw. künstlicher (13C-An- oder -Abreicherung) Markierung. References Abraham, W. R., Hesse, C., Pelz, O. (1998): Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64, 4202–4209. Amelung, W. (2001): Methods Using Amino Sugars as Markers for Microbial Residues in Soil, in Lal, R., Kimble, J. M., Follett, R. F., Stewart, B. A.: Assessment Methods for Soil Carbon. Lewis Publishers, Boca Raton, pp. 233–272. Amelung, W., Cheshire, M. V., Guggenberger, G. (1996): Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biol. Biochem. 28, 1631–1639. Aoyama, M., Angers, D. A., N'Dayegamiye, A., Bissonnette, N. (2000): Metabolism of 13C-labeled glucose in aggregates from soils with manure application. Soil Biol. Biochem. 32, 295–300. Arrouays, D., Balesdent, J., Mariotti, A., Girardin, C. (1995): Modelling organic carbon turnover in cleared temperate forest soil converted to maize cropping by using 13C natural abundance measurements. Plant Soil 173, 191–196. Balesdent, J., Mariotti, A. (1996): Measurement of soil organic matter turnover using 13C natural abundance, in Boutton, T. W., Yamasaki, S.: Mass Spectrometry of Soils. Marcel Dekker, New York, pp. 83–111. Ballentine, D. C., Macko, S. A., Turekian, V. C. (1998): Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning. Chem. Geol. 152, 151–161. Bender, M. M. (1971): Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochem. 10, 1239–1244. Bol, R., Amelung, W., Friedrich, C., Ostle, N. J. (2000): Natural 13C abundance as a tool to assess the carbon release from dung patches. Soil Biol. Biochem. 32, 1337–1344. Bonde, T. A., Christensen, B. T., Cerri, C. C. (1992): Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated Oxisols. Soil Biol. Biochem. 24, 275–277. Boom, A., Mora, G., Cleef, A. M., Hooghiestra, H. (2001): High altitude C4-grassland in the northern Andes, relics from glacial conditions? Rev. Paleobot. Palyn. 115, 147–160. Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R. J., Cappenberg, T. E. (1998): Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801–805. Bourbonniere, R. A., Telford, S. L., Ziolkowski, L. A., Lee, J., Evans, M. S., Meyers, P. A. (1997): Biogeochemical marker profiles in cores of dated sediments from Large North American lakes, in Eganhouse, R. P.: Molecular Markers in Environmental Geochemistry. Vol. ACS Symposium Series 671, American Chemical Society, Washington, D.C., pp. 133–150. Boutton, T. W. (1991): Stable Carbon Isotope Ratios of Natural Materials: II. Atmospheric, Terrestrial, Marine, and Freshwater Environments, in Fry, B., Coleman, D. C.: Carbon Isotope Techniques. Academic Press Inc, London, pp. 173–185. Brincat, D., Yamada, K., Ishiwatari, R., Uemura, H., Naraoka, H. (2000): Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Org. Geochem. 31, 287–294. Brodowski, S., Rodionov, A., Haumaier, L., Glaser, B., Amelung, W. (2005): Black carbon assessment using benzenepolycarboxylic acids: revised method. Org. Geochem. 36, 1299–1310. Budzinski, H., Mazeas, L., Le Menach, K. (2003): C-13 analysis of PAH: A new dimension in source assessment studies. Chimia 57, 41–43. Burke, R. A., Molina, M., Cox, J. E., Osher, L. J., Piccolo, M. C. (2003): Stable isotope ratio and composition of microbial fatty acids in tropical soils. J. Env. Qual. 32, 198–206. Caimi, R. J., Brenna, J. T. (1995): High-Sensitivity Liquid-Chromatography Combustion Isotope Ratio Mass-Spectrometry of Fat-Soluble Vitamins. J. Mass Spec. 30, 466–472. Camargo, P. B., Trumbore, S., Martinelli, L. A., Davidson, D. A., Nepstad, D. C., Victoria, R. L. (1999): Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biol. 5, 693–702. Christensen, B. T. (1992): Physical fractionation of soil and organic matter in primary particle-size and density separates. Adv. Soil Sci. 20, 1–90. Christensen, B. T. (1996): Carbon in primary and secondary organomineral complexes, in Carter, M. R., Stewart, B. A.: Advances in Soil Science, Vol. 27. CRC Lewis, Boca Raton, pp. 97–165. Cifuentes, L. A., Salata, G. G. (2001): Significance of carbon isotope discrimination between bulk carbon and extracted phspholipid fatty acids in selected terrestrial and marine environments. Org. Geochem. 32, 613–621. Collatz, G. J., Berry, J. A., Clark, J. S. (1998): Effects of climate and atmospheric CO2 partial pressure on global distribution of C4 grasses: present, past and future. Oecologia 114, 441–454. Collister, J. W., Rieley, G., Stern, B., Eglinton, G., Fry, B. (1994): Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolism. Org. Geochem. 21, 619–627. Craig, H. (1953): The geochemistry of stable carbon isotopes. Geochim. Cosmochim. Acta 3, 53–92. Crossman, Z. M., Ineson, P., Evershed, R. P. (2005): The use of 13C labelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils. Org. Geochem. 36, 769–778. Derrien, D., Balesdent, J., Marol, C., Santaella, C. (2003): Measurement of 13C/12C ratio of soil-plant individual sugars by gas chromatography/combustion/isotope-ratio mass spectrometry of silylated derivatives. Rapid Commun. Mass Spectrom. 17, 2626–2631. Dignac, M. F., Bahri, H., Rumpel, C., Rasse, D. P., Bardoux, G., Balesdent, J., Girardin, C., Chenu, C., Mariotti, A. (2005): Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux ecperimental field (France). Geoderma, in press. van Dongen, B. E., Schouten, S., Sinninghe Damsté, J. S. (2002): Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants. Marine Ecol. Progress Ser. 232, 83–92. Farquhar, G. (1997): Carbon Dioxide and Vegetation. Science 278, 1411–1412. Filley, T. R., Freeman, K. H., Bianchi, T. S., Baskaran, M., Colarusso, L. A., Hatcher, P. G. (2001): An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Org. Geochem. 32, 1153–1167. Frostegard, A., Tunlid, A., Baath, E. (1991): Microbial biomass measured as total lipid phosphate in soil of different organic content. J. Microbiol Meth. 14, 151–163. Gerzabek, M. H., Habenhauer, G., Kirchmann, H. (2001): Soil organic matter pools and carbon-13 natural abundances in particle-size fractions of a long-term agricultural field experiment receiving organic amendments. Soil Sci. Soc. Am. J. 65, 352–358. Glaser, B., Amelung, W. (2002): Determination of 13C natural abundance of amino acid enantiomers in soil: methodological considerations and first results. Rapid Commun. Mass Spectrom. 16, 891–898. Glaser, B., Amelung, W. (2003): Pyrogenic carbon in native grassland soils along a climosequence in North America. Global Biogeochem. Cycl. 17, 1064, DOI: 10.1029/2002GB002019. Glaser, B., Gross, S. (2005): Compound-specific δ13C analysis of individual amino sugars – a tool to quantify timing and amount of soil microbial residue stabilization. Rapid Commun. Mass Spectrom. 19, 1409–1416. Glaser, B., Zech, W. (2005): Reconstruction of climate and landscape Changes of a High Mountain Lake Catchment in the Gorkha Himal, Nepal, during the Late Glacial and Holocene Deduced from Radiocarbon and Compound-Specific Stable Isotope Analyses of Terrestrial, Aquatic, and Microbial Biomarkers. Org. Geochem. 36, 1086–1098. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W. (1998): Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org. Geochem. 29, 811–819. Glaser, B., Bol, R., Preedy, N., McTiernan, K. B., Clark, M., Amelung, W. (2001a): Short-term sequestration of slurry-derived carbon and nitrogen in temperate grassland soil as assessed by 13C and 15N natural abundance measurements. J. Plant Nutr. Soil Sci. 164, 467–474. Glaser, B., Guggenberger, G., Zech, W. (2001b): Black carbon in sustainable soils of the Brazilian Amazon region, in Swift, R. S., Spark, K. M.: Understanding & Managing Organic Matter in Soils, Sediments & Waters. International Humic Substances Society, St. Paul, MN, pp. 359–364. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W. (2001c): The Terra Preta phenomenon: a model for sustainable agriculture in the humid tropics. Naturwiss. 88, 37–41. Glaser, B., Lehmann, J., Steiner, C., Nehls, T., Yousaf, M., Zech, W. (2002a): Potential of Pyrolyzed Organic Matter in Soil Amelioration, in Juren, J.: Sustainable Utilization of Global Soil and Water Resources. Proc. 12th ISCO Conf., May 26–31, 2002, Beijing, China, pp. 421–427. Glaser, B., Rodionov, A., Zech, W. (2002b): Origin of pyrogenic carbon in mollisols as assessed by 13C natural abundance of benzenecarboxylic acids, in: Abstracts of Papers of the American Chemical Society 223, Part 1, Ap. 7 2002. p. 009-GEOC. Glaser, B., Turrión, M.-B., Alef, K. (2004): Amino sugars and muramic acid – Biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 36, 399–407. Glaser, B., Millar, N., Blum, H. (2005a): Sequestration and turnover of bacterial and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2. Global Change Biol., in review. Glaser, B., Dreyer, A., Bock, M., Fiedler, S., Heitmann, T. (2005b): Source apportionment of organic pollutants of a highway traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Env. Sci. Techn. 39, 3911–3917. Gleixner, G., Bol, R., Balesdent, J. (1999): Molecular insight into soil carbon turnover. Rapid Commun. Mass Spectrom. 13, 1278–1283. Goñi, M. A., Ruttenberg, K. C., Eglinton, T. I. (1998): A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta 62, 3055–3075. Gross, S., Glaser, B. (2004): Minimization of foreign carbon addition during derivatization of organic molecules for compound-specific δ13C analysis of soil organic matter. Rapid Commun. Mass Spectrom. 18, 2753–2764. Guggenberger, G., Frey, S. D., Six, J., Paustian, K., Elliott, E. T. (1999): Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci. Soc. Am. J. 63, 1188–1198. Habfast, K. (1997): Advanced isotope ratio mass spectrometry I: magnetic isotope ratio mass spectrometers, in Platzner, I. T.: Modern Isotope Ratio Mass Spectrometry. Wiley & Sons Ltd., New York. Haider, K. (1992): Problems related to the humification processes in soils of temperate climates, in Stotzky, G., Bollag, J. M.: Soil Biochemistry. Marcel Dekker Inc., New York, pp. 55–94. Hakansson, S. (1985): A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions. Quat. Sci. Rev. 4, 135–146. Hammer, B. T., Kelley, C. A., Coffin, R. B., Cifuentes, L. A., Mueller, J. G. (1998): delta C-13 values of polycyclic aromatic hydrocarbons collected from two creosote-contaminated sites. Chem. Geol. 152, 43–58. Hanson, J. R., Macalady, J. L., Harris, D., Scow, K. M. (1999): Linking toluene degradation with specific microbial populations in soil. Appl. Environ. Microbiol. 65, 5403–5408. He, H., Xie, H., Zhang, X. (2005): A novel GC/MS technique for assessment of 15N and 13C incorporation into soil amino sugars. Soil Biol. Biochem., in press. Hedges, J. I., Ertel, J. R. (1982): Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal. Chem. 54, 174–178. Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., Evershed, R. P., Kögel-Knabner, I., de Leeuw, J. W., Littke, R., Michaelis, W., Rullkotter, J. (2000): The molecularly uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958. Hobbie, E. A., Werner, R. A. (2004): Intramolecular, compound-specific, and bulk carbon isotope patterns in C-3 and C-4 plants: a review and synthesis. New Phytol. 161, 371–385. Hoefs, M. J. L., Rijpstra, W. I. C., Damste, J. S. S. (2002): The influence of oxic degradation on the sedimentary biomarker record I: evidence from Madeira Abyssal Plain turbidities. Geochim. Cosmochim. Acta 66, 2719–2735. Huang, Y., Bol, R., Harkness, D. D., Ineson, P., Eglinton, G. (1995): The distributions and carbon isotopic compositions of individual lipids and of bulk organic matter in acid upland soils, in Grimalt, J. O., Dorronsoro, C.: Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. Selected papers from the 17th International Meeting of Organic Geochemistry, September 4–18, 1995, Donostia-San Sebastian, Spain, pp. 23–26. van Kessel, C., Nitschelm, J., Horwath, W. R., Harris, D., Walley, F., Lüscher, A., Hartwig, U. A. (2000): Carbon-13 input and turn-over in a pasture soil exposed to long-term elevated atmospheric CO2. Global Change Biol. 6, 123–135. Kögel-Knabner, I. (2000): Analytical approaches for characterizing soil organic matter. Org. Geochem. 31, 609–625. Krull, E. S., Skjemstad, J. O., Graetz, D., Grice, K., Dunning, W., Cook, G., Parr, J. F. (2003): C-13-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org. Geochem. 34, 1337–1352. Krummen, M. W., Hilkert, A. W., Juchelka, D., Duhr, A., Schlüter, H. J., Pesch, R. (2004): A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2260–2266. Lichtfouse, E., Eglinton, T. I. (1995): 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Org. Geochem. 23, 969–973. Macko, S. A. (1994): Compound-specific approaches using stable isotopes, in Lajtha, K., Michener, R. H.: Stable Isotopes in Ecological and Environmental Studies. Blackwell, Oxford, UK, pp. 241–247. Macko, S. A., Ryan, M., Engel, M. H. (1998): Stable isotopic analysis of individual carbohydrates by gas chromatographic / combustion / isotope ratio mass spectrometry. Chem. Geol. 152, 205–210. Martin, J. P., Haider, K., Kassim, G. (1980): Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Sci. Soc. Am. J. 44, 1250–1255. Mazeas, L., Budzinski, H. (1999): Quantification of petrogenic PAH in marine sediment using molecular stable carbon isotopic ratio measurement. Analusis 27, 200–203. McRae, C., Love, G. D., Murray, I. P., Snape, C. E., Fallick, A. E. (1996): Potential of gas chromatography isotope ratio mass spectrometry to source polycyclic aromatic hydrocarbon emissions. Anal. Commun. 33, 331–333. McRae, C., Snape, C. E., Sun, C. G., Fabbri, D., Tartari, D., Trombini, C., Fallick, A. E. (2000): Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment. Environ. Sci. Technol. 34, 4684–4686. Meier-Augenstein, W. (1997): The chromatographic side of isotope ratio mass spectrometry: Pitfalls and answers. LC GC Int. 10, 17–25. Mentot, G., Burns, S. J. (2001): Carbon isotopes in ombrogenic peat bog plant as climatic indicators: calibration from an altitudinal transect in Switzerland. Org. Geochem. 32, 233–245. O'Leary, M. (1988): Carbon Isotopes in Photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants. Phytochem. 38, 328–335. Oades, J. M. (1984): Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76, 319–337. Oades, J. M. (1989): An introduction to organic matter in mineral soils, in Dixon, J. B., Weed, S. B.: Minerals in Soil Environments, Vol. 1. Soil Science Society of America Publishers Inc., Madison, WI, USA, pp. 89–159. Okuda, T., Kumata, H., Naraoka, H., Ishiwatari, R., Takada, H. (2002): Vertical distributions and delta C-13 isotopic compositions of PAHs in Chidorigafuchi Moat sediment. Japan. Org. Geochem. 33, 843–848. O'Malley, V. P., Abrajano, T. A., Hellou, J. (1994): Determination of the C-13 C-12 Ratios of Individual PAH from Environmental-Samples – Can PAH Sources Be Apportioned. Org. Geochem. 21, 809–822. O'Malley, V. P., Abrajano, T. A., Hellou, J. (1996a): Stable carbon isotopic apportionment of individual polycyclic aromatic hydrocarbons in St John's Harbour, Newfoundland. Environ. Sci. Technol. 30, 634–639. O'Malley, V. P., Stark, A., Abrajano, T. A., Hellou, J., Winsor, L. (1996b): Tracing polycyclic aromatic hydrocarbons in the environment using C-13/C-12 ratios. Polycycl. Aromat. Compd. 9, 93–100. O'Malley, V. P., Burke, R. A., Schlotzhauer, W. S. (1997): Using GC-MS/Combustion/IRMS to determine the C-13/C-12 ratios of individual hydrocarbons produced from the combustion of biomass materials – application to biomass burning. Org. Geochem. 27, 567–581. Parton, W. J., Schimel, D. S., Cole, C. V., Ojima, D. S. (1987): Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179. Pelz, O., Chatzinotas, A., Andersen, N., Bernasconi, S. M., Hesse, C., Abraham, W. R., Zeyer, J. (2001): Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch. Microbiol 175, 270–281. Pessenda, L. C. R., Aravena, R., Melfi, A. J., Telles, E. C. C., Boulet, R., Valencia, E. P. E., Tomazello, M. (1996a): The use of carbon isotopes (13C, 14C) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon 38, 191–201. Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Martinelli, L. A., Cerri, C. C., Aravena, R. K. R. (1996b): Natural radiocarbon measurements in Brazilian soils developed on basic rocks. Radiocarbon 38, 203–208. Petit, J. R. J., Raynaud, D. J., Barkov, N. I., Barnola, J.-M., Basile, I., Benders, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzmann, E., Stievenard, M. (1999): Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436. Phillips, D. L., Gregg, J. W. (2001): Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171–179. Phillips, R. L., Zak, D. R., Holmes, W. E., White, D. C. (2002): Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131, 236–244. Rasse, D. P., Dignac, M. F., Bahri, H., Rumpel, C., Mariotti, A., Chenu, C. (2005): Assessing lignin turnover in an agricultural field: from plant residues to soil-protected fractions. Eur. J. Soil Sci., in press. Rieley, G. (1994): Derivatization of organic compounds prior to gas chromatographic-combustion-isotope ratio mass spectrometric analysis: Identifcation of isotope fractionation processes. Analyst 119, 915–919. Rodionov, A., Amelung, W., Urusevskaja, I., Zech, W. (1999): Klimaeinfluß auf Lignin und Polysaccharide in Partikelgrößen-Fraktionen zonaler Steppenböden Rußlands. J. Plant Nutr. Soil Sci. 162, 231–238. Roscoe, R., Buurman, P., Velthorst, E. J., Vasconcellos, C. A. (2001): Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol. Geoderma 104, 185–202. Sage, R. F. (2004): The evolution of C4 photosynthesis. New Phytol. 161, 341–370. Sauheitl, L., Glaser, B., Bol, R. (2005): Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific δ13C-analyses. Rapid Commun. Mass Spectrom. 19, 1437–1446. Scharpenseel, H. W., Becker-Heidmann, P., Neue, H. U., Tsutsuki, K. (1989): Bomb-carbon, 14C-dating and 13C-measurments as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci. Tot. Env. 81/82, 99–110. Schmidt, M. W. I., Noack, A. G. (2000): Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycl. 14, 777–793. Schmidt, T. C., Zwank, L., Elsner, M., Berg, M., Meckenstock, R. U., Haderlein, S. B. (2004): Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal. Bioanal. Chem. 378, 283–300. Schmitt, J., Glaser, B., Zech, W. (2003): Amount-dependent isotopic fractionation during compound-specific isotope analysis. Rapid Commun. Mass Spectrom. 17, 970–977. Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M., McClure, S. G. (1996): The chemistry and nature of protected carbon in soil. Austral. J. Soil Res. 34, 251–271. Stark, A., Abrajano, T., Hellou, J., Metcalf-Smith, J. L. (2003): Molecular and isotopic characterization of polycyclic aromatic hydrocarbon distribution and sources at the international segment of the St. Lawrence River. Org. Geochem. 34, 225–237. Stemmer, M., von Lützow, M., Kandeler, E., Pichlmayer, F., Gerzabek, M. H. (1999): The effect of maize straw placement on mineralization of C and N in soil particle size fractions. Eur. J. Soil Sci. 50, 73–86. St-Jean, G. (2003): Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Commun. Mass Spectrom. 17, 419–428. Stott, D. E., Kassim, G., Jarrell, W. M., Martin, J. P., Haider, K. (1983): Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil. Plant Soil 70, 15–26. Street-Perrott, F. A., Huang, Y., Perrott, R. A., Eglinton, G., Barker, P., Khelifa, L. B., Harkness, D. D., Olago, D. O. (1997): Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, 1421–1427. Van Groenigen, K.-J., Harris, D., Horwath, W. R., Hartwig, U. A., van Kessel, C. (2002): Linking sequestration of 13C and 15N in aggregates in a pasture soil following 8 years of elevated CO2. Global Change Biol. 11, 1094–1108. Waldrop, M. P., Firestone, M. K. (2004): Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochem. 67, 235–248. Waldrop, M. P., Balser, T. C., Firestone, M. K. (2000): Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32, 1837–1846. Wilcke, W. (2000): Polycyclic aromatic hydrocarbons (PAHs) in soil – a Review. J. Plant Nutr. Soil Sci. 163, 229–243. Wilcke, W., Krauss, M., Amelung, W. (2002): Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): Evidence for different sources in tropical and temperate environments? Environ. Sci. Technol. 36, 3530–3535. Winkler, M. G. (1994): Sensing plant community and climate change by charcoal-carbon isotope analysis. Ecoscience 1, 340–345. Zech, W., Guggenberger, G. (1996): Organic matter dynamics in forest soils of temperate and tropical ecosystems, in Piccolo, A.: Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, pp. 101–170. Zech, W., Guggenberger, G., Zalba, P., Peinemann, N. (1997): Soil organic matter transformation in Argentinian Hapludolls. J. Plant Nutr. Soil Sci. 160, 563–571. Zelles, L. (1999): Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 29, 111–129. Zelles, L., Bai, Q. Y., Beck, T., Beese, F. (1992): Signature of fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol. Biochem. 24, 317–323. Ziegler, F., Kögel, I., Zech, W. (1986): Alteration of gymnosperm and angiosperm lignin during decomposition in forest humus layers. Z. Pflanzenernähr. Bodenkd. 149, 323–331. Citing Literature Volume168, Issue5October, 2005Pages 633-648 ReferencesRelatedInformation

Referência(s)