Mechanism and quantitative contribution of the pentose pathway to the glucose metabolism of Morris Hepatoma 5123C

1987; Elsevier BV; Volume: 19; Issue: 2 Linguagem: Inglês

10.1016/0020-711x(87)90324-7

ISSN

1878-6014

Autores

Krishan K. Arora, John P. Longenecker, John F. Williams,

Tópico(s)

Biochemical and Molecular Research

Resumo

An investigation of the mechanism and quantitative contribution of the pentose phosphate pathway in the glucose metabolism of Morris Hepatoma 5123C is reported. Morris Hepatoma 5123C has an active non-oxidative segment of pentose pathway as judged by its ability to convert ribose 5-P to hexose 6-P in a standard assay. Based on compliance with qualitative and quantitative criteria, the cells exhibit the L-type pentose pathway reaction sequence rather than the F-type pathway. This compliance included the formation of intermediates characteristic of the L-type pathway, namely arabinose 5-P, octulose mono- and bisphosphates and sedoheptulose 1,7-bisphosphate, during the dissimilation of ribose 5-P to hexose 6-P. The intermediary role of arabinose 5-P was suggested by the incorporation of its carbon into various intermediates and products of the pentose pathway. Intermediary roles for ido octulose mono- and bisphosphates were supported by their participation in the reaction catalyzed by the phosphotransferase enzyme of the L-type pentose pathway. Presence of L-type PP reactions was further affirmed by 14C-prediction labelling experiments using [5-14C]- and [2-14C]glucose as specifically labelled substrates. Using two methods of measurement, the F-type pentose cycle made a negligibly small contribution to glucose metabolism, while the measured value of the L-type pentose pathway accounted for 30% (approx.) of the total glucose metabolism of these cells, a value consistent with the high activity of the enzymes of the L-type pentose pathway in Morris Hepatoma 5123C cells and the very high activity of the non-oxidative segment of the pathway in vitro. The findings validate the proposal that the L-type pentose pathway reactions constitute the non-oxidative segment of the pathway in Morris Hepatoma 5123C cells. Reasons involving pyruvate recycling reactions show why there is low incorporation of 14C-isotope in C-1 of glucose 6-P, when [4,5,6-14C]glucose and [6-14C]glucose are L-type PP test substrates in intact cells.

Referência(s)